View More View Less
  • 1 Tambov State Technical University, 106, Sovetskaya St., Tambov, 392000, Russia
Open access

In the present research, phenol-formaldehyde resins were used instead of common surfactants for dispersing carbon nanotubes and graphene nanoplatelets in order to develop new composite materials. The use of such resins makes it possible to increase the concentration of nanoparticles in solution by approximately two orders of magnitude. The presence of reactive groups on the surface of the phenol-formaldehyde-resin-modified carbonnanotubes and graphene nanoplatelets promotes synthesis of a variety of composites. According to the experiments performed herein, the modification of the nanomaterials with the phenol-formaldehyde resin significantly improves their compatibility and provides good water-solubility. While dispersing in water, the aggregates of the carbon nanotubes disappear, giving rise to an ordered structure. Besides, they form stable colloidal solutions at slightly alkaline pH values, but coagulate when decreasing the pH. This effect allows for self-assembly of carbon and composite nanostructures from nanoparticles in solution due to pH adjustment. This enables easy synthesis of hybrid composite materials based on carbon nanotubes, graphene nanoplatelets and phenol-formaldehyde resins.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1]

    Bello A. , Barzegar F., Momodu D., Fatemeh T., Mopeli F., Julien D., Ncholu M. (2014) Morphological characterization and impedance spectroscopy study of porous 3D carbons based on graphene foam-PVA/phenolformaldehyde resin composite as an electrode material for supercapacitors. RSC Adv 4 39066-39072.

    • Search Google Scholar
    • Export Citation
  • [2]

    Boncel S. , Koziol K., Walczak K.Z., Windle A.H., Shaffer M.S.P. (2011) Infiltration of highly aligned carbon nanotube arrays with molten polystyrene. Mater Lett 65 22992303.

    • Search Google Scholar
    • Export Citation
  • [3]

    Bradford P.D. , Wang X., Zhao H., Maria J.-P., Jia Q., Zhu Y.T. (2010) A novel approach to fabricate high volume fraction nanocomposites with long aligned carbon nanotubes. Compos Sci Technol 70 19801985.

    • Search Google Scholar
    • Export Citation
  • [4]

    Cai W. , Lai T., Dai W., Ye J. (2014) A facile approach to fabricate flexible all-solid-state supercapacitors based on MnFe2O4/graphene hybrids. J Power Sources 255 170178.

    • Search Google Scholar
    • Export Citation
  • [5]

    Chen P. , Su Y., Liu H., Wang Y. (2013) Interconnected tin disulfide nanosheets grown on graphene for Li-ion storage and photocatalytic applications. ACS Appl Mater Interfaces 5 1207312082.

    • Search Google Scholar
    • Export Citation
  • [6]

    Chen Y. , Li Y., Yip M., Tai N. (2013) Electromagnetic interference shielding efficiency of polyaniline composites filled with graphene decorated with metallic nanoparticles. Compos Sci Technol 80 8086.

    • Search Google Scholar
    • Export Citation
  • [7]

    Cong Y. , Li X., Qin Y., Dong Z., Yuan G., Cui Z., Lai X. (2011) Carbon-doped TiO2 coating on multiwalled carbon nanotubes with higher visible light photocatalytic activity. Appl. Catal B - Environ 107 128-134.

    • Search Google Scholar
    • Export Citation
  • [8]

    Du G. , Wang X., Zhang L., Feng Y., Li Y. (2013) Controllable synthesis of different ZnO architectures decorated reduced graphene oxidenanocomposites. Mater Lett 96 128130.

    • Search Google Scholar
    • Export Citation
  • [9]

    Favaro M. , Agnoli S., Di Valentin C., Mattevi C., Cattelan, M., Artiglia L., Magnano E., Bondino F., Nappini S., Granozzi G. (2014) TiO2/graphene nanocomposites from the direct reduction of graphene oxide by metal evaporation. Carbon 68 319329.

    • Search Google Scholar
    • Export Citation
  • [10]

    Heli H. , Yadegari H. (2014) Poly(ortho-aminophenol)/graphene nanocomposite as an efficient supercapacitor electrode. J Electroanal Chem 713 103111.

    • Search Google Scholar
    • Export Citation
  • [11]

    Heli H. , Yadegari H., Jabbari A. (2012) Graphene nanosheets-poly(o-aminophenol) nanocomposite for supercapacitor applications. Mater Chem Phys 134 2125.

    • Search Google Scholar
    • Export Citation
  • [12]

    Huang, C.W. , Hsieh C.T., Kuo P.L., Teng H. (2012) Electric double layer capacitors based on a composite electrode of activated mesophase pitch and carbon nanotubes. J Mater Chem 22 7314-7322.

    • Search Google Scholar
    • Export Citation
  • [13]

    Hung C.J. , Lin P., Tseng T.Y. (2014) High energy density asymmetric pseudocapacitors fabricated by graphene/ carbon nanotube/MnO2 plus carbon nanotubes nanocomposites electrode. J Power Sources 259 145153.

    • Search Google Scholar
    • Export Citation
  • [14]

    Kim S. , Fornasiero F., Park H.G., In J.B., Meshot E., Giraldo G., Stadermann M., Fireman M., Shan J., Grigoropoulos C.P., Bakajin O. (2014) Fabrication of flexible, aligned carbon nanotube/polymer composite membranes by in-situ polymerization. J Membrane Sci 460 9198.

    • Search Google Scholar
    • Export Citation
  • [15]

    Li J. , Li K., Li M., Gosselink D., Zhang Y., Chen P. (2014) A sulfur–polyacrylonitrile/graphene composite cathode for lithium batteries with excellent cyclability. J Power Sources 252 107112.

    • Search Google Scholar
    • Export Citation
  • [16]

    Li M. , Song H., Chen X., Zhou J., Ma Z. (2015) Phenolic resin-grafted reduced graphene oxide as a highly stable anode material for lithium ion batteries. Phys Chem Chem Phys 17 3250-3260.

    • Search Google Scholar
    • Export Citation
  • [17]

    Li Sh. , Zhang X., Zhao J., Meng F., Xu G., Yong Zh., Jia J., Zhang Z., Li Q. (2012) Enhancement of carbon nanotube fibres using different solvents and polymers. Compos Sci Technol 72 14021407.

    • Search Google Scholar
    • Export Citation
  • [18]

    Li Z. , Su Y., Yun G., Shi K., Lv X., Yang B. (2014) Binder free synthesis of MnO2 nanoplates/graphene composites with enhanced supercapacitive properties. Solid State Commun 192 8288.

    • Search Google Scholar
    • Export Citation
  • [19]

    Lv R. , Cruz-Silva E., Terrones M. (2014) Building complex hybrid carbon architectures by covalent interconnections: Graphene–nanotube hybrids and more. ACS Nano 8 40614069.

    • Search Google Scholar
    • Export Citation
  • [20]

    Melezhyk A.V. , Tkachev A.G. (2014) Synthesis of graphene nanoplatelets from peroxosulfate graphite intercalation compounds. Nanosystems: Phys Chem Math 5 294306.

    • Search Google Scholar
    • Export Citation
  • [21]

    Oueiny C. , Berlioz S., Perrin F. (2014) Carbon nanotube–polyaniline composites. Prog Polym Sci 39 707748.

  • [22]

    Rastogi R. , Kaushal R., Tripathi S.K., Sharma A.L., Kaur I., Bharadwaj L.M. (2008) Comparative study of carbon nanotube dispersion using surfactants. J Colloid Interf Sci 328 421428.

    • Search Google Scholar
    • Export Citation
  • [23]

    Seo S.-D. , Hwang I.-S., Lee S.-H., Shim H.-W., Kim D.-W. (2012) 1D/2D carbon nanotube/graphene nanosheet composite anodes fabricated using electrophoretic assembly. Ceram Int 38 30173021.

    • Search Google Scholar
    • Export Citation
  • [24]

    Shen W. , Shi M., Wang M., Chen H.Z. (2010) A simple synthesis of Fe3O4 nanoclusters and their electromagnetic nanocomposites with polyaniline. Mater Chem Phys 122 588594.

    • Search Google Scholar
    • Export Citation
  • [25]

    Song H. , Li X., Zhang Y., Wang H., Li H., Huang J. (2014) A nanocomposite of needle-like MnO2 nanowires arrays sandwiched between graphene nanosheets for supercapacitors. Ceram Int 40 12511255.

    • Search Google Scholar
    • Export Citation
  • [26]

    Sun D. , Zou Q., Qian G., Sun C., Jiang W., Li F.S. (2013) Controlled synthesis of porous Fe3O4-decorated graphene with extraordinary electromagnetic wave absorption properties. Acta Mater 61 58295834.

    • Search Google Scholar
    • Export Citation
  • [27]

    Tang W. , Hou Y.Y., Wang X.J., Baib Y., Zhua Y.S., Suna H., Yueb Y.B., Wua Y.P., Zhub K., Holzec R. (2012) A hybrid of MnO2 nanowires and MWCNTs as cathode of excellent rate capability for supercapacitors. J Power Sources 197 330333.

    • Search Google Scholar
    • Export Citation
  • [28]

    Tong G. , Wu W., Hua Q., Miao Y., Guan J., Qian H. (2011) Enhanced electromagnetic characteristics of carbon nanotubes/carbonyl iron powders complex absorbers in 2–18 GHz ranges. J Alloy Compd 509 451456.

    • Search Google Scholar
    • Export Citation
  • [29]

    Vaisman L. , Wagner H.D., Marom G. (2006) The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interf Sci 128–130 3746.

    • Search Google Scholar
    • Export Citation
  • [30]

    Vega-Rios A. , Rentería-Baltiérrez F.Y., Hernández-Escobar C.A., Zaragoza-Contreras E.A. (2013) A new route toward graphene nanosheet/polyaniline composites using a reactive surfactant as polyaniline precursor. Synthetic Met 184 5260.

    • Search Google Scholar
    • Export Citation
  • [31]

    Wang X. , Bradford P.D., Li Q., Zhu Y. (2014) Aligned carbon nanotube composite prepregs, In “Nanotube superfiber materials: Changing engineering design”, Schulz M.J., Shanov V.N., Yin Zh. (Eds.), Elsevier, Chapter 23, 649670.

    • Search Google Scholar
    • Export Citation
  • [32]

    Wei F. , Zhang Q., Qian W.-Zh., Xu G.-H., Xiang R., Wen Q., Wang Y., Luo G.-H. (2007) Progress on aligned carbon nanotube arrays. New Carbon Mater 22 271282.

    • Search Google Scholar
    • Export Citation
  • [33]

    Wu X.F. , Zhao Y.K., Zhao Z.H., Sun Y., Zheng S.S. (2015) Graphene oxide-carbon nanotubes hybrids: Preparation, characterization, and application in phenol formaldehyde resin. J Macromol Sci Phys 54 15071514.

    • Search Google Scholar
    • Export Citation
  • [34]

    Xie R. , Wang J., Yang Y., Jiang K., Li Q., Fan Sh. (2011) Aligned carbon nanotube coating on polyethylene surface formed by microwave radiation. Compos Sci Technol 72 8590.

    • Search Google Scholar
    • Export Citation
  • [35]

    Xu Y. , Zhang D., Cai J., Yuan L., Zhang W. (2012) Effects of multi-walled carbon nanotubes on the electromagnetic absorbing characteristics of composites filled with carbonyl iron particles. J Mater Sci Technol 28 3440.

    • Search Google Scholar
    • Export Citation
  • [36]

    Zhang S. , Peng C., Ng K.C., Chen G.Z. (2010) Nanocomposites of manganese oxides and carbon nanotubes for aqueous supercapacitor stacks. Electrochim Acta 55 74477453.

    • Search Google Scholar
    • Export Citation
  • [37]

    Zhao X. , Li Y., Wang J., Ouyang Z., Li J., Wei G., Su Z. (2014) Interactive oxidation-reduction reaction for the in situ synthesis of graphene-phenol formaldehyde composites with enhanced properties. ACS Appl Mater Interfaces 6 42544263.

    • Search Google Scholar
    • Export Citation
  • [38]

    Zhu Y. , Murali S., Cai W. (2010) Graphene and graphene oxide: Synthesis, properties, and applications. Adv Mater 22 39033958.

  • [39]

    Zhua M. , Li X., Liu W., Cui Y. (2014) An investigation on the photoelectrochemical properties of dye-sensitized solar cells based on graphene–TiO2 composite photoanodes, J Power Sources 262 349355.

    • Search Google Scholar
    • Export Citation
  • [40]

    Zou F. , Yu Y., Cao N., Wu L., Zhi J. (2011) A novel approach for synthesis of TiO2-graphene nanocomposites and their photoelectrical properties, Scripta Mater 64 621624.

    • Search Google Scholar
    • Export Citation