View More View Less
  • 1 Faculty of Engineering and Information Technology, University of Pécs, Boszorkány út 2, H-7624 Pécs, Hungary
Open access

The 3-dimensional model of any k-dimensional cube can be constructed by starting k edges whose Minkowski sum can be called zonotope. Combined 2<j<k initial edges result in 3-models of j-cubes as parts of a k-cube. Suitable combinations of these zonotopes result in 3-dimensional space-filling mosaics. The base of the described cases, presented here, is five cubes constructed with joining vertices in the Platonic dodecahedron. These have 15 differently directed edges whose above zonotope is the 3-model of the 15-cube, or the Archimedean truncated icosidodecahedron. The reported further zonotopes are 3-models of lower-dimensional parts of this one. Pedagogical aspects of this topic are also emphasized.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1]

    Vörös L. Two new space-filling mosaics based on a symmetric 3D model of the 10D cube, Pollack Periodica, Vol. 11, No. 1, 2016, pp. 8190.

    • Search Google Scholar
    • Export Citation
  • [2]

    Vörös L. Structures in the space of Platonic and Archimedean solids, Serbian Architectural Journal, Structural Systems, Vol. 3, No. 2, 2011, pp. 140151.

    • Search Google Scholar
    • Export Citation
  • [3]

    Vörös L., video 21.1-5 (last visited 3 July 2017).

  • [4]

    Coxeter H. S. M. Regular polytopes, 2nd ed, The MacMillan Company, New York, 1963.

  • [5]

    Towle R. Zonotopes, symmetrical-structures, 2008, (last visited 3 July 2017).

  • [6]

    Vörös L. Reguläre Körper und mehrdimensionale Würfel, KoG Scientific and Professional Journal of the Croatian Society for Geometry and Graphics, No. 9, 2005, pp. 2127, (last visited 3 July 2017).

    • Search Google Scholar
    • Export Citation
  • [7]

    Grünbaum, B. Uniform tilings of 3-space, Geombinatorics, 1994, Vol. IV, No. 2, pp. 4956.

  • [8]

    Vörös L. Specialties of models of the 6-dimensional cube, Proceedings of Bridges, 2010, Mathematics, Music, Art, Architecture, Culture, Pécs, Hungary, 24-28 July 2010, pp. 353358.

    • Search Google Scholar
    • Export Citation
  • [9]

    Experience Workshop, (last visited 3 July 2017).

  • [10]

    Fenyvesi K. Bridges: A world community for mathematical art, The Mathematical Intelligencer, Vol. 38, No. 2, 2016, pp. 3545.

The author instructions template is available in MS Word.
Please, download the file from HERE.



  • Materials Science (miscellaneous) SJR Quartile Score (2018): Q3
  • Software SJR Quartile Score (2018): Q3
  • Scimago Journal Rank (2018): 0.219
  • SJR Hirsch-Index (2018): 9

Language: English

Founded in 2006, by the Pollack Mihály Faculty of Engineering, Unversity of Pécs
Publication: One volume of three issues annually
Publication Programme: 2020. Vol. 15.
Indexing and Abstracting Services:



Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Iványi, Amália

Editor(s)-in-Chief: Iványi, Péter

Scientific Secretary

Miklós M. Iványi

Editorial Board

  • B. Bachmann (Hungary)
  • J. Balogh (USA)
  • R. Bancila (Romania)
  • C.C. Baniotopolous (Greece)
  • O. Biro (Austria)
  • Á. Borsos (Hungary)
  • M. Bruggi (Italy)
  • J. Bujňák (Slovakia)
  • A. Csébfalvi (Hungary)
  • M. Devetakovic (Serbia)
  • Sz. Fischer (Hungary)
  • R. Folic (Serbia)
  • J. Frankovská (Slovakia)
  • J. Füzi† (Hungary)
  • J. Gyergyák (Hungary)
  • K. Hamayer (Germany)
  • E. Helerea (Romania)
  • Á. Hutter (Hungary)
  • K. Jármai (Hungary)
  • T.J. Kajtazi (Kosovo)
  • R. Kersner (Hungary)
  • R. Kiss (Hungary)
  • I. Kistelegdi (Hungary)
  • S. Kmet (Slovakia)
  • I. Kocsis (Hungary)
  • L. Kóczy (Hungary)
  • D. Kozak (Croatia)
  • Gy.L. Kovács (Hungary)
  • B.G. Kövesdi (Hungary)
  • T. Krejči (Czech Republic)
  • J. Kruis (Czech Republic)
  • M. Kuczmann (Hungary)
  • T. Kukai (Hungary)
  • M.J. Lamela Rey (Spain)
  • J. Lógó (Hungary)
  • C. Lungoci (Romania)
  • F. Magoules (France)
  • G. Medvegy (Hungary)
  • T. Molnár (Hungary)
  • F. Orbán (Hungary)
  • Z. Orbán (Hungary)
  • D. Rachinskii (Ireland)
  • C.H. Radha (Iraq)
  • M. Repetto (Italy)
  • G. Sierpiński (Poland)
  • Z. Siménfalvi (Hungary)
  • A. Šoltész (Slovakia)
  • Zs. Szabo (Hungary)
  • M. Sysyn (Germany)
  • A. Timár (Hungary)
  • B.H.V. Topping (UK)

Pollack Mihály Faculty of Engineering
Institute: University of Pécs
Address: Boszorkány utca 2. H–7624 Pécs, Hungary
Phone/Fax: (36 72) 503 650