View More View Less
  • 1 Faculty of Engineering and Information Technology University of Pécs, Boszorkány u. 2, H-7624 Pécs, Hungary
Restricted access

Purchase article

USD  $25.00

Purchase this article

USD  $387.00

Avoiding the formation of shrinkage cracks is one of the most important tasks in construction of concrete industrial floors. Cracks appear on the surface of floors when the nonlinear processes in the structure lead to internal stresses that exceed the actual tensile strength of the concrete. The tensile stresses developed depend on the constrained deformation of the floor during shrinkage and the elastic modulus of the material of the concrete slab. However, on the top surface of the floor, the tensile stresses can be increased, if the shrinkage deformations are constrained by the uneven evaporation and the generated friction between the sub-base and the floor. The value of friction coefficient is depended primarily on the surface roughness of the subbase and the type of polyethylene foil used between the sub-base and the concrete slab. The paper presents the results of experimental investigations on the friction coefficient and the effects of its value on the cracking process of industrial concrete floor slabs.

  • [1]

    Dong W. , Zhou X., Wu Z., Kastiukas G. Effect of specimen size on assessment of shrinkage cracking of concrete via elliptical rings: Thin vs. thick, Computers and Structures, Vol. 174, 2016, pp. 6678.

    • Search Google Scholar
    • Export Citation
  • [2]

    Balázs Gy. Special concrete and concrete technology. Vol. II (in Hungarian) Akadémia Kiadó, Budapest, 2009.

  • [3]

    Dong W. , Zhou X., Wu Z. A fracture mechanics-based method for prediction of cracking of circular and elliptical concrete rings under restrained shrinkage, Engineering Fracture Mechanics, Vol. 131, 2014, pp. 687701.

    • Search Google Scholar
    • Export Citation
  • [4]

    Lohmeyer G. , Ebeling K. Concrete slab in factory and storage hall - Planning, design, construction, (in Hungarian) Publikál Ltd, Budapest, 2008.

    • Search Google Scholar
    • Export Citation
  • [5]

    Younis K. H. , Pilakoutas K. Assessment of post-restrained shrinkage mechanical properties of concrete, ACI Materials Journal, Vol. 113, No. 3, 2016, pp. 267276.

    • Search Google Scholar
    • Export Citation
  • [6]

    Antona B. , Johansson R. Crack control of concrete structures subjected to restraint forces, MSc Thesis, Department of Civil and Environmental Engineering, Chalmers University of Technology, Goteborg, Sweden, 2011.

    • Search Google Scholar
    • Export Citation
  • [7]

    Hoek E. , Kaiser P. K., Bawden W. F. Shear strength of discontinuities, In: Support of underground excavations in hard rock, E. Hoek, P. K. Kaiser, W.F. Bawden (Eds.), Chapter 5, Toronto, 1995.

    • Search Google Scholar
    • Export Citation
  • [8]

    Tesfamariam E. K. Comparing discountinuity surface roughness derived from 3D terrestrial laser scan data with traditional Field-based methods, MSc Thesis, International Institute for Geo-Information Science and Earth Observation, Enschede, Netherlands, 2007.

    • Search Google Scholar
    • Export Citation
  • [9]

    Boucz I. , Rozgonyi-Boissinot N., Török Á., Görög P. Direct shear strength test on rocks along discontinuities, under laboratory conditions, Pollack Periodica, Vol. 9, No. 3, 2014, pp. 139150.

    • Search Google Scholar
    • Export Citation
  • [10]

    Mohamad M. E. , Ibrahim I. S., Abdullah R., Rahman A. B., Kueh A. B. H., Usman J. Friction and cohesion coefficients of composite concrete-to-concrete bond, Cement & Concrete Composites, Vol. 56, 2015, pp. 114.

    • Search Google Scholar
    • Export Citation
  • [11]

    Tannant D. , Bahrani N., Gulati V. A. Bedding surface roughness profiles and estimateddilation angles, 61st Canadian Geotechnical Conference, Edmonton, Canada, 21-24 September 2008, pp. 588595.

    • Search Google Scholar
    • Export Citation
  • [12]

    Safranyik F. , Csatár A., Varga A. Experimental method for examination of state dependent friction, Progress in Agricultural Engineering Sciences, Vol. 11, 2015, pp. 2942.

    • Search Google Scholar
    • Export Citation
  • [13]

    Fiedler J. , Koudelka T. Numerical modeling of foundation slab with concentrated load, Pollack Periodica, Vol. 11, No. 3, 2016, pp. 119129.

    • Search Google Scholar
    • Export Citation
  • [14]

    ACI - Guide for modeling and calculating shrinkage and creep in hardened concrete, American Concrete Institute, Farington Hills, 2008.

  • [15]

    Bazant Z. P. , Murphy W. P. Creep and shrinkage prediction model for analysis and design of concrete structures, Materials and Structures, Vol. 28, 1996, pp. 357365.

    • Search Google Scholar
    • Export Citation
  • [16]

    Wu S. , Huang D., Lin F. B., Zhao H., Wang P. Estimation of cracking risk of concrete at early age based on thermal stress analysis, J Therm Anal Calorim, Vol. 105, 2011, pp. 171186.

    • Search Google Scholar
    • Export Citation
  • [17]

    Arany P. , Balázs Gy., Balázs L. Gy., Buday T., Erdéi A., Forgács Sz., Illés F., Kaussay T., Kovács K., Liptay A., Migály B., Pluzsik T., Révay M., Salem G. N., Szeg-né K. É., Szeg- J., Szilágyi J., Tariczky Zs., Tóth T., Újhelyi J., Zsigovics I. Holcim - Cement-concrete handbook, (in Hungarian) Pátria Nyomda Zrt, Budapest, 2008.

    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Sep 2020 121 0 0
Oct 2020 13 0 0
Nov 2020 7 2 0
Dec 2020 6 0 0
Jan 2021 3 0 0
Feb 2021 4 0 0
Mar 2021 0 0 0