View More View Less
  • 1 University of Debrecen, Faculty of Informatics

Correlation clustering is a widely used technique in data mining. The clusters contain objects, which are typically similar to each other and different from objects from other groups. It can be an interesting task to find the member, which is the most similar to the others for each group. These objects can be called representatives. In this paper, a possible way to find these representatives are shown and software to test the method is also provided.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1]

    Bansal N. , Blum A., Chawla S. Correlation clustering, Machine Learning, Vol. 56, No. 1-3, 2004, pp. 89113.

  • [2]

    Becker H. A survey of correlation clustering, COMS E6998: Advanced Topics in Computational Learning Theory, 2005, pp. 1–10.

  • [3]

    Zimek A. Correlation clustering, ACM SIGKDD Explorations Newsletter, Vol. 11, No. 1, 2009, pp. 5354.

  • [4]

    Kim S. , Nowozin S., Kohli P., Yoo C. D. Higher-order correlation clustering for image segmentation, Advances in Neural Information Processing Systems, Vol. 24, 2011, pp. 15301538.

    • Search Google Scholar
    • Export Citation
  • [5]

    Bhattacharya A. , De R. K. Divisive correlation clustering algorithm (dcca) for grouping of genes: detecting varying patterns in expression profiles, Bioinformatics, Vol. 24, No. 11, 2008, pp. 13591366.

    • Search Google Scholar
    • Export Citation
  • [6]

    Yang B. , Cheung W. K., Liu J. Community mining from signed social networks, IEEE Transactions on Knowledge and Data Engineering, Vol. 19, No. 10, 2007, pp. 13331348.

    • Search Google Scholar
    • Export Citation
  • [7]

    Chen Z. , Yang S., Li L., Xie Z. A clustering approximation mechanism based on data spatial correlation in wireless sensor networks, IEEE Wireless Telecommunications Symposium, Tampa, FL, USA, 21-23 April 2010, pp. 1–7.

    • Search Google Scholar
    • Export Citation
  • [8]

    Neda Z. , Florian R., Ravasz M., Libál A., Györgyi G. Phase transition in an optimal clusterization model, Physica A, Statistical Mechanics and its Applications, Vol. 362, No. 2, 2006, pp. 357368.

    • Search Google Scholar
    • Export Citation
  • [9]

    Aszalos L. , Mihálydeák T. Rough clustering generated by correlation clustering, In: Ciucci D., Inuiguchi M., Yao Y., Ślęzak D., Wang G. (Eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, Lecture Notes in Computer Science, Vol. 8170, Springer, Berlin, Heidelberg 2013, pp. 315–324.

    • Search Google Scholar
    • Export Citation
  • [10]

    Aszalos L. , Mihálydeák T. Rough classification based on correlation clustering, In: Miao D., Pedrycz W., Ślȩzak D., Peters G., Hu Q., Wang R. (Eds) Rough Sets and Knowledge Technology, Lecture Notes in Computer Science, Vol. 8818. Springer, 2014, pp. 399–410.

    • Search Google Scholar
    • Export Citation
  • [11]

    Aigner M. Enumeration via ballot numbers, Discrete Mathematics, Vol. 308, No. 12, 2008, pp. 25442563.

  • [12]

    Goldberg D. E. , Holland J. H. Genetic algorithms and machine learning, Machine Learning, Vol. 3, No. 2, 1988, pp. 9599.

  • [13]

    Kinczer T. Šulek P. The impact of genetic algorithm parameters on the optimization of hydro-thermal coordination, Pollack Periodica, Vol. 11, No. 2, 2016, pp. 113123.

    • Search Google Scholar
    • Export Citation
  • [14]

    Hatwagner M. , Horvath A. Error handling techniques of genetic algorithms in parallel computing environment, Pollack Periodica, Vol. 3, No. 2, 2008, pp. 314.

    • Search Google Scholar
    • Export Citation
  • [15]

    GitHub, https://github.com/lordimp88/representative (last visited 27 December 2017)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Sep 2020 0 4 1
Oct 2020 0 5 5
Nov 2020 0 8 1
Dec 2020 0 3 7
Jan 2021 0 7 6
Feb 2021 0 8 10
Mar 2021 0 0 0