Iron corrosion products of the steel canister in the nuclear waste container are highly silica sorptive materials and very much expected to delay formation of the protective layer (gel) on the nuclear glass interface. This study is focusing on the role of the iron carbonates (ankerite), which is probably one of iron corrosion products and already exists in the clay structure of the disposal depth. French SON68 inactive reference glass (alternative to the R7T7- type) samples are planned to leach in different series of experimental models with dissimilar quantities of natural ankerite. All batch experiments will be cultivated in synthetic Callovo-Oxfordian groundwater; where different pH (4-9) values and temperatures (35, 50, 90 °C) are considered. In this paper the state of the art of the radioactive waste glass corrosion in the circumstances of deep geological disposal were extensively studied.
Musić S. , Ristić M., Gotić M., Forić J. Corrosion of simulated nuclear waste glass, Journal of Radioanalytical and Nuclear Chemistry, Vol. 122. No. 1, 1988, pp. 91–102
Minet Y. , Bonin B., Gin S., Frugier P. Analytic implementation of the GRAAL model: Application to a R7T7-type glass package in a geological disposal environment, Journal of Nuclear Materials, Vol. 404, No. 3, 2010, pp. 178‒202.
Grambow B. Nuclear waste glasses -How durable? Elements, Vol. 2, No. 6, 2006, pp. 357–364.
Evaluation of the feasibility of a geological repository in an argillaceous formation, Report Series, Andra, France, 2005.
Thompson L. Vitrification of nuclear waste, Coursework for Physics 240, Stanford University, Fall 2010, 2010.
Storage and disposal of spent fuel and high level radioactive waste, International Atomic Energy Agency, 2006, https://www.iaea.org/About/Policy/GC/GC50/.../English/gc50inf-3-att5_en.pdf, (last visited 25 December 2017).
Eaton G. F. , Smith D. K. Aged nuclear explosive melt glass: Radiography and scanning electron microscope analyses documenting radionuclide distribution and glass alteration, Journal of Radioanalytical and Nuclear Chemistry, Vol. 248. No. 3, 2000, pp. 543‒547.
Treatment and conditioning of nuclear waste, Word Nuclear Association, 2017.
Bouakkaz R. , Abdelouas A., El Mendili Y., Grambow B., Gin S. SON68 glass alteration under Si-rich solutions at low temperature (35–90 oC): kinetics, secondary phases and isotopic exchange studies, RSC Adv, Vol. 6, 2016, pp. 72616–72633.
El Hajj H. , Abdelouas A., Grambow B., Martin C., Dion M. Microbial corrosion of P235GH steel under geological conditions, Physics and Chemistry of the Earth, Parts A/B/C, Vol. 35, No. 6-8, 2010, pp. 248–253.
Féron D. , Crusset D., Gras J. M. Corrosion issues in nuclear waste disposal, Journal of Nuclear Materials, Vol. 379, No. 1-3, 2008, pp. 16–23.
Gin S. Open scientific questions about nuclear glass corrosion, Procedia Materials Science, Vol. 7, 2014, pp. 163–171.
Philippini V. , Naveau A., Catalette H., Leclercq S. Sorption of silicon on magnetite and other corrosion products of iron, Journal of Nuclear Materials, Vol. 348, No. 1-2, 2006, pp. 60–69.
Burger E. , Rebiscoul D., Bruguier F., Jublot M., Lartigue J. E., Gin S. Impact of iron on nuclear glass alteration in geological repository conditions: A multiscale approach, Applied Geochemistry, Vol. 31, 2013, pp. 159–170.
Rebiscoul D. , Frugier P., Gin S., Ayral A. Protective properties and dissolution ability of the gel formed during nuclear glass alteration, Journal of Nuclear Materials, Vol. 342, No. 1-3, 2005, pp. 26–34.
Vernaz E. , Gin S., Jegou C., Ribet I. Present understanding of R7T7 glass alteration kinetics and their impact on long-term behavior modeling, Journal Nuclear Materials, Vol. 298, No. 1-2, 2001, pp. 27‒36.
Gin S. , Ribet I., Couillard M. Role and properties of the gel formed during nuclear glass alteration: Importance of gel formation condition, Journal Nuclear Materials, Vol. 298, No. 1-2, 2001, pp. 1‒10.
Curti E. Glass dissolution parameters, Technical Report, No. PSI-03-18, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland), INIS Vol. 36, No. 3, 2003. p. 62.
Kuang F. , Wang J., Yan L., Zhang D. Effects of sulfate-reducing bacteria on the corrosion behavior of carbon steel, Electrochimica Acta, Vol. 52, No. 20, 2007, pp. 6084‒6088.
Sagues A. A. , Poor N. D., Gaseres L., Akhoondam M. Development of rational method for predicting corrosion rate of metals in solids and water, Final Report to Florida Department of Transportation, University of South Florida, 2009.
Beech I. B. Sulfate-reducing bacteria in biofilms on metallic materials and corrosion, Microbiology Today, Vol. 30. No. 3, 2003, pp. 115‒117.
Harbuľáková V. , Eštoková A., Luptáková A., Števulová N., Janák G. Concrete specimens biodeterioration by bacteria of Acidithiobacillus thiooxidans and desulfovibrio genera, Pollack Periodica, Vol. 4, No. 1, 2009, pp. 83‒92.
Little B. J. , Lee J. S., Ray R. I. Diagnosing microbiologically influenced corrosion: A stateof-the-art review, Corrosion, Vol. 62, No. 11, 2006, pp. 1006‒1017.
Werme L. , Bjorner I. K., Bart G., Zwicky H. U., Grambow B., Lutze W., Ewing R. C., Magrabi C. Chemical corrosion of highly radioactive borosilicate nuclear waste glass under simulated repository conditions, J. Material Research, Vol. 5, No. 5,1990, pp. 1130‒1146.
Bart G. , Zwicky H. U., Aerne E. T., Graber T. H., Z’Berg D., Tokiwai M. Borosilicate glass corrosion in the presence of steel corrosion products, Materials Research Society fall meeting, Boston, MA, USA, 1-5 December 1986, Vol. 18, No. 22,1986, pp. 459‒470.
Mitsui S. , Aoki R. Effect of siliceous additive on aqueous alteration of waste glass with engineered barrier materials, Journal of Nuclear Materials, Vol. 298, No. 1-2, 2001, pp. 184‒191.
Jordan N. , Marmier N., Lomenech C., Giffaut E., Ehrhardt J. J. Sorption of silicates on goethite, hematite, and magnetite: Experiments and modeling, Journal of Colloid and Interface Science, Vol. 312, No. 2, 2007, pp. 224‒229.
Dillmann P. , Gin S., Neff D., Gentaz L., Rebiscoul D. Effect of natural and synthetic iron corrosion products on silicate glass alteration processes, Geochimica et Cosmochimica Acta, Vol. 172, 2016, pp. 287–305.
Jollivet P. , Angeli F., Cailleteau C., Devreux F., Frugier P., Gin S. Investigation of gel porosity clogging during glass leaching, Journal of Non-Crystalline Solids, Vol. 354, No. 45-46, 2008, pp. 4952–4958.
Icenhower J. P. , Steefel C. I. Experimentally determined dissolution kinetics of SON68 glass at 90 °C over a silica saturation interval: Evidence against a linear rate law, Journal of Nuclear Materials, Vol. 439, No. 1-3, 2013, pp. 137–147.
Breitner D. , Osán J., Fábián M., Zagyvai P., Szabó C., Dähn R., Fernandes M. M., Sajó I. E., Máthé Z., Török S. Characteristics of uranium uptake of Boda Claystone formation as the candidate host rock of high level radioactive waste repository in Hungary, Environmental Earth Sciences, Vol. 73, No. 1, 2015, pp. 209‒219.
Buckley H. A. , Woolley A. R. Carbonates of the magnesite-siderite series from four carbonatite complexes, Mineralogical Magazine, Vol. 54, No. 376, 1990, pp. 413‒418.
Chai L. , Navrotsky A. Synthesis, characterization, and energetics of solid solution along thedolomite-ankerite join, and implications for the stability of ordered CaFe(CO3)2, American Mineralogist, Vol. 81, No. 9-10, 1996, pp. 1141‒1147.
Amethyst Galleries’ Mineral Gallery, Ankerite, http://www.galleries.com/Ankerite, (last visited on 24 December 2017).
Xu T. , Apps J. A., Pruess K. Mineral sequestration of carbon dioxide in a sandstone -shale system, Chemical Geology, Vol. 217, No. 3-4, 2005, pp. 295–318.
Gaucher E. C. , Tournassat C., Pearson F. J., Blanc P., Crouzet C., Lerouge C., Altmann S. A robust model for pore-water chemistry of clayrock, Geochimica et Cosmochimica Acta, Vol. 73, No. 21, 2009, pp. 6470‒6487.
Lerouge C. , Vinsot A., Grangeon S., Wille G., Flehoc C., Gailhanou H., Gaucher E. C., Madé B., Altmann S., Tournassat C. Controls of Ca/Mg/Fe activity ratios in pore water chemistry models of the Callovian-Oxfordian clay formation, Procedia Earth and Planetary Science, Vol. 7, 2013, pp. 475–478.
Tournassat C. , Lerougea C., Blanc P., Brendlé J., Greneche J. M., Touzelet S., Gaucher E. C. Cation exchanged Fe(II) and Sr compared to other divalent cations (Ca, Mg) in the bure Callovian–Oxfordian formation: Implications for pore-water composition modeling, Applied Geochemistry, Vol. 23, No. 4, 2008, pp. 641‒654.
Buocz I. , Rozgonyi-Boissinot N., Török Á., Görög P. Direct shear strength test on rocks along discontinuities, under laboratory conditions. Pollack Periodica, Vol. 9, No. 3, 2014, pp. 139‒150.