View More View Less
  • 1 University of Pecs, Boszorkany u. 2, 7624 Pecs, Hungary
  • 2 University of Pécs, H-7624 Pécs, Hungary
Open access

Abstract

Numerical research in the context of urban in a humid continental climate zone is still limited. The aim of modeling the case study is to assess the performance of outdoor thermal comfort parameters and investigate their capabilities in achieving the outdoor thermal comfort. A computer-based tool is used to quantitatively study the outdoor thermal comfort and its weather parameters. The parameters have been analyzed using ENVI-met tool and then compared against different comfort scales like relative humidity comfort scale, the predicted mean vote scale as well as other scales and standards. The results have shown that the average predicted mean vote value is +4 (very hot), the average air temperature is hot, the average wind speed is light breeze and the relative humidity falls within the comfort range. However, street orientation, shading, water bodies and plantation play a significant role in increasing and decreasing the outdoor thermal comfort.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1]

    Baranyai B. , Kistelegdi I. Energy management monitoring and control of public buildings, Pollack Periodica, Vol. 9, No. 2, 2014, pp. 7779.

    • Search Google Scholar
    • Export Citation
  • [2]

    Thorsson S. , Lindqvist M., Lindqvist S. >(2004). Thermal bioclimatic conditions and patterns of behaviour in an urban park in Göteborg, Sweden, International Journal of Biometeorology, Vol. 48, No. 3, 2004, pp. 149156.

    • Search Google Scholar
    • Export Citation
  • [3]

    Oliveira S. , Andrade H. An initial assessment of the bioclimatic comfort in an outdoor public space in Lisbon, International Journal of Biometeorology, Vol. 52, No. 1, 2007, pp. 6970.

    • Search Google Scholar
    • Export Citation
  • [4]

    Nikolopoulou M. , Steemers K. Thermal comfort and psychological adaptation as a guide for designing urban spaces, Energy and Buildings, Vol. 35, No. 1, 2003, pp. 95101.

    • Search Google Scholar
    • Export Citation
  • [5]

    Grifoni R. C. , Passerini G., Pierantozzi M. Assessment of outdoor thermal comfort and its relation to urban geometry, WIT Transactions on Ecology and the Environment, Vol. 173, 2013, pp. 314.

    • Search Google Scholar
    • Export Citation
  • [6]

    Póth B. , Kistelegdi I. (2013). The history of the energy and climate concept of the szentágothai research center, Pollack Periodica, Vol. 8, No. 3, 2013, pp. 314.

    • Search Google Scholar
    • Export Citation
  • [7]

    Shen T. , Chow D. H., Darkwa J. Simulating the influence of microclimatic design on mitigating the urban heat island effect in the Hangzhou Metropolitan area of China, International Journal of Low-Carbon Technologies, Vol. 11, No. 1, 2016, pp. 130139.

    • Search Google Scholar
    • Export Citation
  • [8]

    Mirzaei P. A. , Haghighat F. Approaches to study urban heat island - Abilities and limitations, Building and Environment, Vol. 45, No. 10, 2010, pp. 21922201.

    • Search Google Scholar
    • Export Citation
  • [9]

    Ali-Toudert F. , Mayer H. Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate, Building and Environment, Vol. 41, No. 2, 2006, pp. 94108.

    • Search Google Scholar
    • Export Citation
  • [10]

    Fahmy M. , Sharples S. On the development of an urban passive thermal comfort system in Cairo, Egypt, Building and Environment, Vol. 44, No. 9, 2009, pp. 19071916.

    • Search Google Scholar
    • Export Citation
  • [11]

    Yang X. , Zhao L., Bruse M., Meng Q. Evaluation of a microclimate model for predicting the thermal behavior of different ground surfaces, Building and Environment, Vol. 60, 2013, pp. 93104.

    • Search Google Scholar
    • Export Citation
  • [12]

    Ridha S. J. Effect of aspect ratio and symmetrical distribution on urban design in Baghdad City, and the impact of greenery strategies on improving outdoor thermal comfort, IOP Conference Series: Earth and Environmental Science, Vol. 151, 2018, Paper 012035.

    • Search Google Scholar
    • Export Citation
  • [13]

    Ghaffarianhoseini A. , Berardi U., Ghaffarianhoseini A. Thermal performance characteristics of unshaded courtyards in hot and humid climates, Building and Environment, Vol. 87, 2015, pp. 154168.

    • Search Google Scholar
    • Export Citation
  • [14]

    Monam A. , Rückert K. The dependence of outdoor thermal comfort on urban layouts, Young Cities - Developing Urban Energy Efficiency Project, Technical University of Berlin, 2013.

    • Search Google Scholar
    • Export Citation
  • [15]

    Ali-Toudert F. , Mayer H. Effects of street design on outdoor thermal comfort, https://www.researchgate.net/publication/242157021_EFFECTS_OF_STREET_DESIGN_ON_OUTDOOR_THERMAL_COMFORT, (last visited 25 November 2018).

    • Search Google Scholar
    • Export Citation
  • [16]

    Lahm E. , Bruse M. Microclimatic effects of a small urban park in densely built-up areas: Measurements and model simulations, 5th International Conference on Urban Climate, Lodz, Poland, 1–5 September 2003, pp. 273276.

    • Search Google Scholar
    • Export Citation
  • [17]

    Karakounos I. , Dimoudi A., Zoras S. The influence of bioclimatic urban redevelopment on outdoor thermal comfort, Energy and Buildings, Vol. 158, 2018, pp. 12661274.

    • Search Google Scholar
    • Export Citation
  • [18]

    A holistic microclimate model, ENVI-met http://www.envi-met.info/doku.php?id=apps:biomet_pmv, (last visited 27 November 2018).

  • [19]

    Kariminia S. , Ahmad S. S., Omar M., Ibrahim N. Urban outdoor thermal comfort prediction for public square in moderate and dry climate, 2011 IEEE Symposium on Business, Engineering and Industrial Applications, Langkawi, Malaysia, 25–28 September 2011, pp. 308309.

    • Search Google Scholar
    • Export Citation
  • [20]

    Matzarakis A. , Rutz F., Mayer H. Modeling the thermal bioclimate in urban areas with the RayMan Model, The 23rd Conference on Passive and Low Energy Architecture, Geneva, Switzerland, 6–8 September 2006, pages 14.

    • Search Google Scholar
    • Export Citation
  • [21]

    Thorsson S. , Lindberg F., Eliasson I., Holmer B. Different methods for estimating the mean radiant temperature in an outdoor urban setting, International Journal of Climatology, Special Issue: Urban Climatology, Vol. 27, No. 14, 2007, pp. 19831993.

    • Search Google Scholar
    • Export Citation
  • [22]

    Groat L. N. , Wang D. Architectural research methods, 2nd Ed. 2013.

  • [23]

    Energy Design Tools Group, http://energy-design-tools.aud.ucla.edu/climate-consultant/request-climate-consultant.php, (last visited 3 September 2018).

    • Search Google Scholar
    • Export Citation
  • [24]

    Széchenyi square, Pécs, https://en.wikipedia.org/wiki/Sz%C3%A9chenyi_square_(P%C3%A9cs) (last visited 3 September 2018).

  • [25]

    Google earth, https://earth.google.com/, (last visited 4 August 2018).

  • [26]

    Climate of Hungary, https://www.met.hu/en/eghajlat/magyarorszag_eghajlata/altalanos_eghajlati_jellemzes/szel/, (last visited 10 August 2018.)

    • Search Google Scholar
    • Export Citation
  • [27]

    European Insulation Manufacturers Association, EURIMA, https://www.eurima.org/, (last visited 6 September 2018).

  • [28]

    ASHRAE Standard 55-2004, Thermal environmental conditions for human occupancy, American Society of Heating, Refrigerating, and Air-Conditioning Engineers, 2004.

    • Search Google Scholar
    • Export Citation
  • [29]

    Kenawy I. , Afifi M. M., Mahmoud A. H. The effect of planning design on thermal comfort in outdoor spaces, First International Conference of Sustainability and the Future, Eelshourouq, Egypt, 23–25 November 2010, pages 112.

    • Search Google Scholar
    • Export Citation
  • [30]

    Beaufort Wind Scale, https://www.spc.noaa.gov/faq/tornado/beaufort.html, (last visited 14 September 2018).

  • [31]

    Designing buildings, Wiki share your construction industry knowledge, https://www.designingbuildings.co.uk/wiki/Mean_radiant_temperature, (last visited 21 November 2018).

    • Search Google Scholar
    • Export Citation

The author instructions template is available in MS Word.
Please, download the file from HERE.

 

MANUSCRIPT SUBMISSION

  • Materials Science (miscellaneous) SJR Quartile Score (2018): Q3
  • Software SJR Quartile Score (2018): Q3
  • Scimago Journal Rank (2018): 0.219
  • SJR Hirsch-Index (2018): 9

Language: English

Founded in 2006, by the Pollack Mihály Faculty of Engineering, Unversity of Pécs
Publication: One volume of three issues annually
Publication Programme: 2020. Vol. 15.
Indexing and Abstracting Services:

  • SCOPUS

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Iványi, Amália

Editor(s)-in-Chief: Iványi, Péter


Scientific Secretary

Miklós M. Iványi

Editorial Board

  • B. Bachmann (Hungary)
  • J. Balogh (USA)
  • R. Bancila (Romania)
  • C.C. Baniotopolous (Greece)
  • O. Biro (Austria)
  • Á. Borsos (Hungary)
  • M. Bruggi (Italy)
  • J. Bujňák (Slovakia)
  • A. Csébfalvi (Hungary)
  • M. Devetakovic (Serbia)
  • Sz. Fischer (Hungary)
  • R. Folic (Serbia)
  • J. Frankovská (Slovakia)
  • J. Füzi† (Hungary)
  • J. Gyergyák (Hungary)
  • K. Hamayer (Germany)
  • E. Helerea (Romania)
  • Á. Hutter (Hungary)
  • K. Jármai (Hungary)
  • T.J. Kajtazi (Kosovo)
  • R. Kersner (Hungary)
  • R. Kiss (Hungary)
  • I. Kistelegdi (Hungary)
  • S. Kmet (Slovakia)
  • I. Kocsis (Hungary)
  • L. Kóczy (Hungary)
  • D. Kozak (Croatia)
  • Gy.L. Kovács (Hungary)
  • B.G. Kövesdi (Hungary)
  • T. Krejči (Czech Republic)
  • J. Kruis (Czech Republic)
  • M. Kuczmann (Hungary)
  • T. Kukai (Hungary)
  • M.J. Lamela Rey (Spain)
  • J. Lógó (Hungary)
  • C. Lungoci (Romania)
  • F. Magoules (France)
  • G. Medvegy (Hungary)
  • T. Molnár (Hungary)
  • F. Orbán (Hungary)
  • Z. Orbán (Hungary)
  • D. Rachinskii (Ireland)
  • C.H. Radha (Iraq)
  • M. Repetto (Italy)
  • G. Sierpiński (Poland)
  • Z. Siménfalvi (Hungary)
  • A. Šoltész (Slovakia)
  • Zs. Szabo (Hungary)
  • M. Sysyn (Germany)
  • A. Timár (Hungary)
  • B.H.V. Topping (UK)

POLLACK PERIODICA
Pollack Mihály Faculty of Engineering
Institute: University of Pécs
Address: Boszorkány utca 2. H–7624 Pécs, Hungary
Phone/Fax: (36 72) 503 650

E-mail: ivanyi.peter@pmmik.pte.hu 

or ivanyi@pmmik.pte.hu