The presented multichannel measuring system working on various frequencies is suitable either for electrical impedance spectroscopy or tomography. The authors of this paper have developed the complete measurement system and a graphical user interface platform. The accuracy of impedance amplitude and phase are 1 ppm and 0.01°, respectively. The basic instrument works with 8 channels and can be expanded to 64 channels with the application of multiplexing or multiple parallel connected instruments in the same system.
Williams G. , Thomas D. K. Phenomenological and molecular theories of dielectric and electrical relaxation of materials, Application Note Dielectrics, Vol. 3, 1998, pp. 1–29.
Holder D. S. Electrical impedance tomography: methods, history and applications, CRC Press. 2004.
Yasin M. , Böhm S., Gaggero P. O., Adler A. Evaluation of EIT system performance, Physiological Measurement, Vol. 32, No. 7, 2011, pp. 851–865.
Barone F. , Calloni E., DiFiore L., Grado A., Milano L., Russo G. High-performance modular digital lock-in amplifier, Review of Scientific Instruments, Vol. 66, No. 6, 1995, pp. 3697–3702.
Probst P. A. , Jaquier A. Multiple-channel digital lock-in amplifier with ppm resolution, Review of Scientific Instruments, Vol. 65, No. 3, 1994, pp. 747–750.
Bengtsson L. E. A microcontroller-based lock- in amplifier for sub-milliohm resistance measurements, Review of Scientific Instruments, Vol. 83, No. 7, 2012, Paper 075103.
Sonnaillon M. O. , Bonetto F. J. A low-cost, high-performance, digital signal processor-based lock- in amplifier capable of measuring multiple frequency sweeps simultaneously, Review of Scientific Instruments, Vol. 76, No. 2, 2005, Paper 024703.
Zurich Instruments, http://www.zhinst.com/ products, (last visited 20 August 2016).
Stanford research systems, http://www.thinksrs.com/, (last visited 20 August 2016).
Accattatis A. , Saggio G., Giannini F. A real time FFT-based impedance meter with bias compensation, Measurement, Vol. 44, No. 4, 2011, pp. 702–707.
Sun S. , Xu L., Cao Z., Zhou H., Yang W. A high-speed electrical impedance measurement circuit based on information-filtering demodulation, Measurement Science and Technology, Vol. 25, No. 7, 2014, Paper 075010.
Hu B. , Wang J., Song G., Zhang F. A compact wideband precision impedance measurement system based on digital auto-balancing bridge, Measurement Science and Technology, Vol. 27, No. 5, 2016, Paper 055902.
Vizireanu D. N. A simple and precise real-time four point single sinusoid signals instantaneous frequency estimation method for portable DSP based instrumentation Measurement, Vol. 44, No. 2, 2011, pp. 500–502.
Li G. , Zhou M., Li X., L. Lin Digital lock-in algorithm and parameter settings in multichannel sensor signal detection, Measurement, Vol. 46, No. 8, 2013, pp. 2519–2524.
Min M. , Märtens O., Parve T. Lock-in measurement of bio-impedance variations, Measurement, Vol. 27, No. 1, 2000, pp. 21–28.
Cifuentes A. , Marín E. Implementation of a field programmable gate array-based lock-in amplifier, Measurement, Vol. 69, 2015, pp. 31–41.
Piasecki T. , Chabowski K., Nitsch K. Design, calibration and tests of versatile low frequency impedance analyzer based on ARM microcontroller, Measurement, Vol. 91, 2016, pp. 155–161.
Keysight technologies, http://www.keysight.com/, (last visited 20 August 2016).
UPR resistors Token Passive Components Ltd. http://www.4-direct.com/pdf/resistor-ppm/ultra-precision-resistor-upr.pdf, (last visited 20 August 2016).
Metallized polyester film capacitor d.c. multipurpose applications, Kemet (Formerly Arcotronics) Distributor, R82 Series, 2016.
Patent P1500616, Borbás K., Kiss T., Klincsik M., Kvasznicza Z., Máthé K., Vér Cs., Vizvári Z., Odry P. Process and measuring system for data acquisition and processing in soft-tomography studies (in Hungarian) 2015.
Libbrecht K. , Black E., Hirata C. A basic lock-in amplifier experiment for the undergraduate laboratory, American Journal of Physics, Vol. 71, No. 11, 2003, pp. 1208–1213.
Metshein M. , Parve T., Annus P., Rist M., Min M. Realization and evaluation of the device for measuring the impedance of human body for detecting the respiratory and heart rate, Electronics and Electrical Engineering, Vol. 23, No. 3, 2017, pp. 36–42.
Ojarand J. , Min M. Efficient excitation signals for the fast impedance spectroscopy, Electronics and Electrical Engineering, Vol. 20, No. 5, 2014, pp. 144–149.
Máthé K. , Szabó I. Miniature digital telemetric bioelectric recording, Pollack Periodica, Vol. 1, No. 3, 2006, pp. 115–127
Dittrich E. Analysis of subsurface-flow Hungarian constructed wetlands with wetland-model, Pollack Periodica, Vol. 7, No. 3, 2012. pp. 65–78
Pécz T. Conservational and hydrological problems of Lake Riha, Pollack Periodica, Vol. 5, No. 2, 2010. pp. 135–140.
Vizvári Z. , Kiss T., Máthé K., Odry P., Vér C., Divós F. Multi-frequency electrical impedance measurement on a wooden disc sample, Acta Silvatica et Lignaria Hungarica, Vol. 11, No. 2, 2015, pp. 153–162.