View More View Less
  • 1,2 National University of Public Service, Bajcsy-Zsilinszky u. 12-14, H-6500 Baja, Hungary
Open access


Decentralized wastewater systems treat, dispose and reuse the wastewater in the vicinity of source, reducing the sewage transportation cost to minimal. As an alternative to centralized systems it can function as a satellite system or an individual wastewater treatment unit. Design an onsite facility applies the same sizing procedure compared the conventional large scale systems, whereas the input flow data and its variability, the model parameters could differ. In this study a small size treatment unit was designed by biokinetic modeling, where the model parameters were estimated using analytical methods. As a result of the calculation the biomass build-up and the quality of the treated effluent was predicted and the operation parameters were determined in summer and winter operation.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1]

    Ebtehaj I. , Bonakdari, H., Sharifi A. Design criteria for sediment transport in sewers based on self-cleansing concept, Journal of Zhejiang University, Science A, Vol. 15, No. 11, 2014, pp. 914924.

    • Search Google Scholar
    • Export Citation
  • [2]

    Libralato G. , Ghirardini, A. V., Avezzù F. To centralise or to decentralise: An overview of the most recent trends in wastewater treatment management, Journal of Environmental Management, Vol. 94, No. 1, 2012, pp. 6168.

    • Search Google Scholar
    • Export Citation
  • [3]

    Gutterer B. , Sasse, L., Panzerbieter, T., Reckerzügel T. Decentralized wastewater treatment systems (DEWATS) and sanitation in developing countries, Water, Engineering and Development Centre, Loughborough University of Technology, UK, 2009.

    • Search Google Scholar
    • Export Citation
  • [4]

    Moelants N. , Janssen, G., Smets, I., Van Impe J. Field performance assessment of onsite individual wastewater treatment systems, Water Science and Technology, Vol. 58, No. 1, 2008, pp. 16.

    • Search Google Scholar
    • Export Citation
  • [5]

    Singh S. , Haberl, R., Moog, O., Shrestha, R. R., Shrestha, P., Shrestha R. Performance of an anaerobic baffled reactor and hybrid constructed wetland treating high-strength wastewater in Nepal - A model for DEWATS, Ecological Engineering, Vol. 35, No. 5, 2009, pp. 654660.

    • Search Google Scholar
    • Export Citation
  • [6]

    Reynaud N. , Buckley C. Field-data on parameters relevant for design, operation and monitoring of communal decentralized wastewater treatment systems (DEWATS), Water Practice and Technology, Vol. 10, No. 4, 2015, pp. 787798.

    • Search Google Scholar
    • Export Citation
  • [7]

    Sándor, D. B. Szabó A. , Fleit E., Bakacsi Z., Zajzon G. PVA-PAA hydrogel micro-carrier for the improvement of phase separation efficiency of biomass in wastewater treatment, Pollack Periodica, Vol. 12, No. 2, 2017, pp. 91102.

    • Search Google Scholar
    • Export Citation
  • [8]

    Karches T. Effect of aeration on residence time in biological wastewater treatment, Pollack Periodica, Vol. 13, No. 2, 2018, pp. 97106.

    • Search Google Scholar
    • Export Citation
  • [9]

    Inc. Metcalf & Eddy, Tchobanoglous G., Stensel H. D., Tsuchihashi R., Burton F. Wastewater Engineering: Treatment and Resource Recovery, McGraw-Hill, 2013.

    • Search Google Scholar
    • Export Citation
  • [10]

    Smets I. Y. , Haegebaert, J. V., Carrette, R., Van Impe, J. F. Linearization of the activated sludge model ASM1 for fast and reliable predictions, Water Research, Vol. 37, No. 8, 2003, pp. 18311851.

    • Search Google Scholar
    • Export Citation
  • [11]

    Gujer W. , Henze, M., Mino, T., van Loosdrecht M. Activated sludge model No. 3, Water Science and Technology, Vol. 39, No. 1, 1999, pp. 183193

    • Search Google Scholar
    • Export Citation
  • [12]

    Meister M. , Winkler, D., Rezavand, M., Rauch W. Integrating hydrodynamics and biokinetics in wastewater treatment modeling by using smoothed particle hydrodynamics, Computers & Chemical Engineering, Vol. 99, 2017, pp. 112.

    • Search Google Scholar
    • Export Citation
  • [13]

    Brun R. , Kühni M., Siegrist H., Gujer W., Reichert P. Practical identifiability of ASM2d parameters - Systematic selection and tuning of parameter subsets, Water Research, Vol. 36, No. 16, 2002, pp. 41134127.

    • Search Google Scholar
    • Export Citation
  • [14]

    Lopez-Vazquez C. M. ; Oehmen A., Hooijmans C. M., Brdjanovic D., Gijzen H. J., Yuan Z., van Loosdrecht M. C. M. Modeling the PAO-GAO competition: Effects of carbon source, pH and temperature, Water Research, Vol. 43, No. 2, 2009, pp. 450462.

    • Search Google Scholar
    • Export Citation

The author instructions template is available in MS Word.
Please, download the file from HERE.



  • Materials Science (miscellaneous) SJR Quartile Score (2018): Q3
  • Software SJR Quartile Score (2018): Q3
  • Scimago Journal Rank (2018): 0.219
  • SJR Hirsch-Index (2018): 9

Language: English

Founded in 2006, by the Pollack Mihály Faculty of Engineering, Unversity of Pécs
Publication: One volume of three issues annually
Publication Programme: 2020. Vol. 15.
Indexing and Abstracting Services:



Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Iványi, Amália

Editor(s)-in-Chief: Iványi, Péter

Scientific Secretary

Miklós M. Iványi

Editorial Board

  • B. Bachmann (Hungary)
  • J. Balogh (USA)
  • R. Bancila (Romania)
  • C.C. Baniotopolous (Greece)
  • O. Biro (Austria)
  • Á. Borsos (Hungary)
  • M. Bruggi (Italy)
  • J. Bujňák (Slovakia)
  • A. Csébfalvi (Hungary)
  • M. Devetakovic (Serbia)
  • Sz. Fischer (Hungary)
  • R. Folic (Serbia)
  • J. Frankovská (Slovakia)
  • J. Füzi† (Hungary)
  • J. Gyergyák (Hungary)
  • K. Hamayer (Germany)
  • E. Helerea (Romania)
  • Á. Hutter (Hungary)
  • K. Jármai (Hungary)
  • T.J. Kajtazi (Kosovo)
  • R. Kersner (Hungary)
  • R. Kiss (Hungary)
  • I. Kistelegdi (Hungary)
  • S. Kmet (Slovakia)
  • I. Kocsis (Hungary)
  • L. Kóczy (Hungary)
  • D. Kozak (Croatia)
  • Gy.L. Kovács (Hungary)
  • B.G. Kövesdi (Hungary)
  • T. Krejči (Czech Republic)
  • J. Kruis (Czech Republic)
  • M. Kuczmann (Hungary)
  • T. Kukai (Hungary)
  • M.J. Lamela Rey (Spain)
  • J. Lógó (Hungary)
  • C. Lungoci (Romania)
  • F. Magoules (France)
  • G. Medvegy (Hungary)
  • T. Molnár (Hungary)
  • F. Orbán (Hungary)
  • Z. Orbán (Hungary)
  • D. Rachinskii (Ireland)
  • C.H. Radha (Iraq)
  • M. Repetto (Italy)
  • G. Sierpiński (Poland)
  • Z. Siménfalvi (Hungary)
  • A. Šoltész (Slovakia)
  • Zs. Szabo (Hungary)
  • M. Sysyn (Germany)
  • A. Timár (Hungary)
  • B.H.V. Topping (UK)

Pollack Mihály Faculty of Engineering
Institute: University of Pécs
Address: Boszorkány utca 2. H–7624 Pécs, Hungary
Phone/Fax: (36 72) 503 650