View More View Less
  • 1,2 Széchenyi István University, Egyetem tér 1 H-9026 Győr, Hungary
Open access


The paper discusses the theoretical background of the state space modeling of induction machines. The main goal is to present the necessary equations of the induction machine and the topic of the state space modeling. Although the induction machine is a highly non-linear system, LPV/qLPV model can be formulated from these equations.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1]

    Tabatabeeipour S. M. , Stoustrup, J., Bak T. Fault-tolerant control of descrete-time LPV systems using virtual actuators and sensors, Internation Journal of Robust and Nonlinear Control, Vol. 25, No. 5, 2015, pp. 707734.

    • Search Google Scholar
    • Export Citation
  • [2]

    Khamari D. , Makouf, A., Drid S. Control of induction motor using polytopic LPV models, 2011 International Conference on Communications, Computer and Control Applications, Hammamet, Tunisia, 3–5 March 2011, pages 15.

    • Search Google Scholar
    • Export Citation
  • [3]

    Khamari D. , Makouf, A., Drid, S., Chrifi-Alaoui L. High performance of self-scheduled linear parameter varying control with flux observer of induction motor, Journal of Electrical Engineering and Technology, Vol. 8, No. 5, 2013, pp. 12021211.

    • Search Google Scholar
    • Export Citation
  • [4]

    Kaiyu W. , Chiasson, J., Bodson, M., Tolbert L. M. An online rotor time constant estimator for the induction machine, IEEE Transactions on Control Systems Technology, Vol. 15, No. 2, 2007, pp. 339348.

    • Search Google Scholar
    • Export Citation
  • [5]

    Drid S. , Benoudjit, D., Csrifi-Alaoui, L., Khamari D. A comparative study of rotor flux estimation in induction motor with linear parameter varying observer and Kalman filter, 15th International Conference on Science and Techniques of Automatic Control & Computer Engineering, Hammamet, Tunisia, 21-23 December 2014, pp. 668672.

    • Search Google Scholar
    • Export Citation
  • [6]

    Pan J. , Westwick, D., Nowicki E. Flux estimation of induction machines with linear parameter-varying system identification method, Canadian Conference on Electrical and Computer Engineering, Ontario, Canada, 2-5 May 2004, Vol. 4, pp. 22132216.

    • Search Google Scholar
    • Export Citation
  • [7]

    Bendtsen J. D. , Trangbaek, K., Descrete-time LPV current control of an induction motor, 42nd IEEE International Conference on Decision and Control, Maui, Hawaii, USA, December 9–12, 2003, pp. 59035908.

    • Search Google Scholar
    • Export Citation
  • [8]

    Prempain E. , Postlethwaite, I., Benchaib A. A linear parameter variant H-infinity control design for an induction motor, Control Engineering Practice, Vol. 10, No. 6, 2002, pp. 633644.

    • Search Google Scholar
    • Export Citation
  • [9]

    Leonhard W. Control of electrical drives, Springer-Verlag, 1990.

  • [10]

    Marcsa D. , Kuczmann M. Motion finite element simulation of a single-phase induction motor, Pollack Periodica, Vol. 4, No. 2, 2009, pp. 5766.

    • Search Google Scholar
    • Export Citation
  • [11]

    Tranbaek K. Linear parameter varying control of induction motors, PhD Thesis, Aalborg University, Denmark, 2001.

  • [12]

    Rasmussen H. Self-tuning torque control of Induction motors for high performance application, PhD Thesis, Aalborg University, Denmark, 1995.

    • Search Google Scholar
    • Export Citation
  • [13]

    Horváth K. , Kuslits M. Dynamic performance of estimator-based speed sensorless control of induction machines using extended and unscented Kalman filters, Power Electronics and Drives, Vol. 3, No. 1, 2018, pp. 129144.

    • Search Google Scholar
    • Export Citation
  • [14]

    Duesterhoeft W. C. , Schulz, M. W., Clarke E. Determination of instantaneous current and voltage by means of alpha, beta, and zero components, Transaction of the American Institute of Electrical Engineers, Vol. 70, No. 2, 1951, pp. 12481255.

    • Search Google Scholar
    • Export Citation
  • [15]

    Park R. H. Two-reaction theory of synchronous machines generalized method of analysis, Part I, Transactions of the American Institute of Electrical Engineers, Vol. 48, No. 3, 1929, pp. 716727.

    • Search Google Scholar
    • Export Citation
  • [16]

    Kuslits M. Model-based control development of permanent magnet synchronous machines (in Hungarian), Publio Kiadó, Győr, 2016.

  • [17]

    Kovács G. , Kuczmann M. Comparison of the different design software tools for the brushless DC motor designing, Pollack Periodica, Vol. 8, No. 1, 2013, pp. 179188.

    • Search Google Scholar
    • Export Citation

The author instructions template is available in MS Word.
Please, download the file from HERE.



  • Materials Science (miscellaneous) SJR Quartile Score (2018): Q3
  • Software SJR Quartile Score (2018): Q3
  • Scimago Journal Rank (2018): 0.219
  • SJR Hirsch-Index (2018): 9

Language: English

Founded in 2006, by the Pollack Mihály Faculty of Engineering, Unversity of Pécs
Publication: One volume of three issues annually
Publication Programme: 2020. Vol. 15.
Indexing and Abstracting Services:



Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Iványi, Amália

Editor(s)-in-Chief: Iványi, Péter

Scientific Secretary

Miklós M. Iványi

Editorial Board

  • B. Bachmann (Hungary)
  • J. Balogh (USA)
  • R. Bancila (Romania)
  • C.C. Baniotopolous (Greece)
  • O. Biro (Austria)
  • Á. Borsos (Hungary)
  • M. Bruggi (Italy)
  • J. Bujňák (Slovakia)
  • A. Csébfalvi (Hungary)
  • M. Devetakovic (Serbia)
  • Sz. Fischer (Hungary)
  • R. Folic (Serbia)
  • J. Frankovská (Slovakia)
  • J. Füzi† (Hungary)
  • J. Gyergyák (Hungary)
  • K. Hamayer (Germany)
  • E. Helerea (Romania)
  • Á. Hutter (Hungary)
  • K. Jármai (Hungary)
  • T.J. Kajtazi (Kosovo)
  • R. Kersner (Hungary)
  • R. Kiss (Hungary)
  • I. Kistelegdi (Hungary)
  • S. Kmet (Slovakia)
  • I. Kocsis (Hungary)
  • L. Kóczy (Hungary)
  • D. Kozak (Croatia)
  • Gy.L. Kovács (Hungary)
  • B.G. Kövesdi (Hungary)
  • T. Krejči (Czech Republic)
  • J. Kruis (Czech Republic)
  • M. Kuczmann (Hungary)
  • T. Kukai (Hungary)
  • M.J. Lamela Rey (Spain)
  • J. Lógó (Hungary)
  • C. Lungoci (Romania)
  • F. Magoules (France)
  • G. Medvegy (Hungary)
  • T. Molnár (Hungary)
  • F. Orbán (Hungary)
  • Z. Orbán (Hungary)
  • D. Rachinskii (Ireland)
  • C.H. Radha (Iraq)
  • M. Repetto (Italy)
  • G. Sierpiński (Poland)
  • Z. Siménfalvi (Hungary)
  • A. Šoltész (Slovakia)
  • Zs. Szabo (Hungary)
  • M. Sysyn (Germany)
  • A. Timár (Hungary)
  • B.H.V. Topping (UK)

Pollack Mihály Faculty of Engineering
Institute: University of Pécs
Address: Boszorkány utca 2. H–7624 Pécs, Hungary
Phone/Fax: (36 72) 503 650