View More View Less
  • 1,2 Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
Open access


This paper discusses the control of the electric energy consumption in a household equipped with smart devices. The household consumption pattern is the result of a two-level optimization framework. The scheduling of the electric appliances is determined by the first optimization, receiving Time of Use tariffs proposed by the utility company. The scheduler considers the consumer's preferences on the powering on for each appliance.

Secondly a model predictive controller is developed to control the electric heating system based on energy constraints resulting from the appliance scheduling.

Simulations show the energy efficiency and an optimized electricity cost of the strategy proposed.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1]

    Fang X. , Misra, S., Xue, G., Yang D. Al. Smart grid-the new and improved power grid: A survey, IEEE Comm. Survey and Tutorials, Vol. 14, No. 4, 2012, pp. 944980.

    • Search Google Scholar
    • Export Citation
  • [2]

    Borenstein S. , Jaske M. Rosenfield A. Dynamic pricing, advanced metering and demand response in electricity markets, The Energy Foundation, California, 2012.

    • Search Google Scholar
    • Export Citation
  • [3]

    Jowe-Wong C. , Sen, S., Ha, S., Chiang M. Optimized day-ahead pricing for the smart grid with device-specific scheduling flexibility, IEEE Selected Area Comm. Vol. 30, No. 6, 2012, pp. 10751085.

    • Search Google Scholar
    • Export Citation
  • [4]

    Mohsenian-Rad A. H. , Leon-Gercia A. Optimal residential load control with price prediction in real-time electricity pricing environments, IEEE Trans. on Smart Grid, Vol. 1, No. 2, 2010, pp. 120133.

    • Search Google Scholar
    • Export Citation
  • [5]

    Mohsenian-Rad A. H. , Wong, V. W. S., Jatskevich, J., Schober, R., Leon-Garcia A. Autonomous demand side management based on game-theoretic energy consumption scheduling for the future smart grid, IEEE Trans. on Smart Grid, Vol. 1, No. 3, 2010, pp. 320331.

    • Search Google Scholar
    • Export Citation
  • [6]

    Qian L. P. , Zhang, Y. J. A., Huang, J., Wu Y. Demand response management via real-time electricity price control in smart grid, IEEE Selected Area in Comm. Vol. 31, No. 7, 2013, pp. 12681280.

    • Search Google Scholar
    • Export Citation
  • [7]

    Braithwait S. , Hansen, D., O'sheasy M. Retail pricing and rate design in evolving markets, Edison Electric institute, 2007.

  • [8]

    Khan A. R. , Mahmood, A., Safdar, A., Khan, Z. A., Khan N. A. Load forecasting, dynamic pricing and DSM in smart grid: a review, Renewable and Sustainable Energy Reviews, Vol. 54, 2016, pp. 13111322.

    • Search Google Scholar
    • Export Citation
  • [9]

    Ipakchi A. , Albuyeh F. Grid of the future, IEEE Power and Energy Magazine, Vol. 7, No. 2, 2009, pp. 5262.

  • [10]

    Fahrioglu M. , Alvardo F. L. Designing incentive compatible contracts for effective demand managements, IEEE Trans. on Power Systems, Vol. 15, No. 4, 2000, pp. 12551260.

    • Search Google Scholar
    • Export Citation
  • [11]

    Bu H. , Nygard, K. E., Adaptive scheduling of smart home appliances using fuzzy goal programming, The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications, Venice, Italy, 25-29 May 2014, pp. 129135.

    • Search Google Scholar
    • Export Citation
  • [12]

    Bozchalui M. , Hashmi, S. A., Hassen, H., Canizares, A. C., Bhattacharya K. Optimal operation of residential energy hubs in smart grids, IEEE Trans. on Smart Grid, Vol. 3, No. 4, 2012, pp. 17551766.

    • Search Google Scholar
    • Export Citation
  • [13]

    Baranyai B. , Kistelegdi I. Energy management monitoring and control of public buildings, Pollack Periodica, Vol. 9. No. 2, 2014, pp. 7788.

    • Search Google Scholar
    • Export Citation
  • [14]

    Kovari G. , Kistelegdi I. Optimized building automation and control for the improvement of energy efficiency and climate comfort of office buildings, Pollack Periodica, Vol. 10. No. 1, 2015, pp. 7182.

    • Search Google Scholar
    • Export Citation
  • [15]

    Oldewurtel F. , Ulbig, A., Parisio, A., Andersson, G., Morari M. Reducing peak electricity demand in building climate control using reeal-time pricing and model predictive control, 49th IEEE Conf. on Decision and Control, Atlanta, GA, USA, 15-17 December 2010, pp. 19271932.

    • Search Google Scholar
    • Export Citation
  • [16]

    Halvgaard R. , Poulsen, N. K., Madsen, H., Jergensen J. B. Economic model predictive control for building climate control in smart grid, IEEE Conference PES Innovative Smart Grid Technologies, Washington DC, USA, 16-20 January 2012, pages 16.

    • Search Google Scholar
    • Export Citation
  • [17]

    Chen C. , Wang, J., Heo, Y., Kishore S. MPC-based appliance scheduling for residential building energy management controller, IEEE Trans. on Smart Grid, Vol. 4, No. 3, 2013, pp. 14011410.

    • Search Google Scholar
    • Export Citation
  • [18]

    Lőfberg J. , YALMIP: A toolbox for modeling and optimization in MATLAB, IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, 2-4 September 2004, Page No. 8304275.

    • Search Google Scholar
    • Export Citation

The author instructions template is available in MS Word.
Please, download the file from HERE.



  • Materials Science (miscellaneous) SJR Quartile Score (2018): Q3
  • Software SJR Quartile Score (2018): Q3
  • Scimago Journal Rank (2018): 0.219
  • SJR Hirsch-Index (2018): 9

Language: English

Founded in 2006, by the Pollack Mihály Faculty of Engineering, Unversity of Pécs
Publication: One volume of three issues annually
Publication Programme: 2020. Vol. 15.
Indexing and Abstracting Services:



Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Iványi, Amália

Editor(s)-in-Chief: Iványi, Péter

Scientific Secretary

Miklós M. Iványi

Editorial Board

  • B. Bachmann (Hungary)
  • J. Balogh (USA)
  • R. Bancila (Romania)
  • C.C. Baniotopolous (Greece)
  • O. Biro (Austria)
  • Á. Borsos (Hungary)
  • M. Bruggi (Italy)
  • J. Bujňák (Slovakia)
  • A. Csébfalvi (Hungary)
  • M. Devetakovic (Serbia)
  • Sz. Fischer (Hungary)
  • R. Folic (Serbia)
  • J. Frankovská (Slovakia)
  • J. Füzi† (Hungary)
  • J. Gyergyák (Hungary)
  • K. Hamayer (Germany)
  • E. Helerea (Romania)
  • Á. Hutter (Hungary)
  • K. Jármai (Hungary)
  • T.J. Kajtazi (Kosovo)
  • R. Kersner (Hungary)
  • R. Kiss (Hungary)
  • I. Kistelegdi (Hungary)
  • S. Kmet (Slovakia)
  • I. Kocsis (Hungary)
  • L. Kóczy (Hungary)
  • D. Kozak (Croatia)
  • Gy.L. Kovács (Hungary)
  • B.G. Kövesdi (Hungary)
  • T. Krejči (Czech Republic)
  • J. Kruis (Czech Republic)
  • M. Kuczmann (Hungary)
  • T. Kukai (Hungary)
  • M.J. Lamela Rey (Spain)
  • J. Lógó (Hungary)
  • C. Lungoci (Romania)
  • F. Magoules (France)
  • G. Medvegy (Hungary)
  • T. Molnár (Hungary)
  • F. Orbán (Hungary)
  • Z. Orbán (Hungary)
  • D. Rachinskii (Ireland)
  • C.H. Radha (Iraq)
  • M. Repetto (Italy)
  • G. Sierpiński (Poland)
  • Z. Siménfalvi (Hungary)
  • A. Šoltész (Slovakia)
  • Zs. Szabo (Hungary)
  • M. Sysyn (Germany)
  • A. Timár (Hungary)
  • B.H.V. Topping (UK)

Pollack Mihály Faculty of Engineering
Institute: University of Pécs
Address: Boszorkány utca 2. H–7624 Pécs, Hungary
Phone/Fax: (36 72) 503 650