View More View Less
  • 1 University of Miskolc, H-3515 Miskolc, Hungary
  • 2 S&G Solution Ltd., H-3532 Miskolc, Hungary
Open access


A welded steel protective cover used for the heat treatment of steel sheet coils is investigated. The protective cover is made of austenitic stainless steel and consists of three main segments, welded together, which have 1400 mm height each. The plate thicknesses at the lower, middle and upper segments are different. The investigation aimed to improve the lifetime and the number of heat cycles of the protective cover by changing the geometry, the effect of the thicknesses and the material. Damaged covers have been evaluated, made calculations of stress and deformations, and carried out a series of finite element simulations. Both horizontal and vertical corrugated sheets were simulated and compared. The non-corrugated plates were also investigated, but their performance was behind the corrugated ones. The original geometry and that of the horizontal corrugated plate are identical from the stress level point of view. The vertical position of the corrugated plate provided a better result than the horizontal one. The calculated and simulated results for the original geometry are close to the measured damage.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1]

    Inox Service Hungary: Stainless steel material properties and their use., (last visited 3 December 2018)

    • Search Google Scholar
    • Export Citation
  • [2]

    Buckling strength of shells, Recommended Practice DNV-RP-C202, Det Norske Veritas, 2002.

  • [3]

    Farkas J. Thickness design of axially compressed unstiffened cylindrical shells with circumferential welds, Welding in the World, Vol. 46, No. 1112, 2002, pp. 2629.

    • Search Google Scholar
    • Export Citation
  • [4]

    Eurocode 3, Design of steel structures. Part 1–5, Plates structural elements, 2007.

  • [5]

    Kota L. , Jármai J. Efficient algorithms for optimization of objects and systems, Pollack Periodica, Vol. 9, No. 1, 2014, pp. 121132.

    • Search Google Scholar
    • Export Citation
  • [6]

    Virág Z. Optimum design of stiffened plates, Pollack Periodica, Vol. 1, No. 1, 2006, pp. 7792.

  • [7]

    Varga T. , Szepesi, G., Siménfalvi Z. Horizontal scraped surface heat exchanger - Experimental measurements and numerical analysis, Pollack Periodica, Vol. 12, No. 1, 2017, pp. 107122.

    • Search Google Scholar
    • Export Citation
  • [8]

    Berezin I. M. , Petunin, A. A., Kryuchkov, D. I., Kovács G. L. Finite-element simulation of the cold stamping process of spherical vessels, Pollack Periodica, Vol. 12, No. 1, 2017, pp. 8192.

    • Search Google Scholar
    • Export Citation

The author instructions template is available in MS Word.
Please, download the file from HERE.



  • Materials Science (miscellaneous) SJR Quartile Score (2018): Q3
  • Software SJR Quartile Score (2018): Q3
  • Scimago Journal Rank (2018): 0.219
  • SJR Hirsch-Index (2018): 9

Language: English

Founded in 2006, by the Pollack Mihály Faculty of Engineering, Unversity of Pécs
Publication: One volume of three issues annually
Publication Programme: 2020. Vol. 15.
Indexing and Abstracting Services:



Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Iványi, Amália

Editor(s)-in-Chief: Iványi, Péter

Scientific Secretary

Miklós M. Iványi

Editorial Board

  • B. Bachmann (Hungary)
  • J. Balogh (USA)
  • R. Bancila (Romania)
  • C.C. Baniotopolous (Greece)
  • O. Biro (Austria)
  • Á. Borsos (Hungary)
  • M. Bruggi (Italy)
  • J. Bujňák (Slovakia)
  • A. Csébfalvi (Hungary)
  • M. Devetakovic (Serbia)
  • Sz. Fischer (Hungary)
  • R. Folic (Serbia)
  • J. Frankovská (Slovakia)
  • J. Füzi† (Hungary)
  • J. Gyergyák (Hungary)
  • K. Hamayer (Germany)
  • E. Helerea (Romania)
  • Á. Hutter (Hungary)
  • K. Jármai (Hungary)
  • T.J. Kajtazi (Kosovo)
  • R. Kersner (Hungary)
  • R. Kiss (Hungary)
  • I. Kistelegdi (Hungary)
  • S. Kmet (Slovakia)
  • I. Kocsis (Hungary)
  • L. Kóczy (Hungary)
  • D. Kozak (Croatia)
  • Gy.L. Kovács (Hungary)
  • B.G. Kövesdi (Hungary)
  • T. Krejči (Czech Republic)
  • J. Kruis (Czech Republic)
  • M. Kuczmann (Hungary)
  • T. Kukai (Hungary)
  • M.J. Lamela Rey (Spain)
  • J. Lógó (Hungary)
  • C. Lungoci (Romania)
  • F. Magoules (France)
  • G. Medvegy (Hungary)
  • T. Molnár (Hungary)
  • F. Orbán (Hungary)
  • Z. Orbán (Hungary)
  • D. Rachinskii (Ireland)
  • C.H. Radha (Iraq)
  • M. Repetto (Italy)
  • G. Sierpiński (Poland)
  • Z. Siménfalvi (Hungary)
  • A. Šoltész (Slovakia)
  • Zs. Szabo (Hungary)
  • M. Sysyn (Germany)
  • A. Timár (Hungary)
  • B.H.V. Topping (UK)

Pollack Mihály Faculty of Engineering
Institute: University of Pécs
Address: Boszorkány utca 2. H–7624 Pécs, Hungary
Phone/Fax: (36 72) 503 650