View More View Less
  • 1,2 University of Miskolc, H-3515 Miskolc, Hungary
Open access


Stability is one of the most critical problems in the design of welded metal structures, since in many cases instability causes failure or collapse of the structures. The present study aims to show the minimum mass design procedure for welded steel box columns loaded by a compression force. The normal stresses and overall stability are calculated for pinned columns. The dimensions of the box columns are optimized by using constraints on global stability, local buckling of webs and flanges. Different design rules and standards are compared: Eurocode 3, Japan Railroad Association, American Petroleum Institute, and American Institute of Steel Construction. The calculations are made for different loadings, column length and steel grades. The yield stress varies between 235 and 690 MPa. Optimization is carried out using the generalized reduced gradient method in Excel solver. Cost calculations and comparisons show the most economical structure.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1]

    Euler L. Determination of the loads, which are strong enough to bear the pillars, (in Latin) Acta Acad. Sci. Petrop, Vol. 2, 1776.

  • [2]

    Ayrton W. E. , Perry J. On struts, The Engineer, Vol. 62, 1886, pp. 464465, pp. 513514.

  • [3]

    Faulkner D. , Adamczak J. C. Snyder G. J., Vetter M. F. Synthesis of welded grillages to withstand compression and normal loads, Computers and Struct, Vol. 3, No. 2, 1973, pp. 221246.

    • Search Google Scholar
    • Export Citation
  • [4]

    Ellinas C. P. , Supple, W. J. Walker A. C. Buckling of offshore structures, Granada, London, 1984.

  • [5]

    Eurocode 3, Part 1.1, Design of steel structures, General rules and rules for buildings, European Committee for Standardization, Brussels, 1992.

    • Search Google Scholar
    • Export Citation
  • [6]

    Beer H. , Schulz G. Theoretical bases of European buckling curves, (in French) Construction Métallique, Vol. 3, No. 3, 1970, pp. 3755.

    • Search Google Scholar
    • Export Citation
  • [7]

    Farkas J. The effect of residual welding stresses on the buckling strength of compressed plates, Proc. Regional Colloquium on Stability of Steel Structures, Budapest, Hungary, 19-21, September 1977, pp. 299306.

    • Search Google Scholar
    • Export Citation
  • [8]

    Maquoi R. , Rondal J. Equation of the new European buckling curves, (in French) Construction Métallique, Vol. 15, No. 1, 1978, pp. 1730.

    • Search Google Scholar
    • Export Citation
  • [9]

    Specifications for Highway Bridges, Part I–V, Japan Road Association, JRA, 2012.

  • [10]

    Design of flat plate structures, Bulletin 2V, Third Ed., American Petroleum Institute, API, 2004.

  • [11]

    Stability design of steel buildings, Design guide 28, American Institute of Steel Construction, AISC, 2005.

  • [12]

    Braham M. , Grimault, J.P., Massonnet, C., Mouty J. Rondal J. Buckling of thin-walled hollow sections, Cases of axially-loaded rectangular sections, Acier-Stahl-Steel, Vol. 45, 1980, pp. 3036.

    • Search Google Scholar
    • Export Citation
  • [13]

    Farkas J. , Jármai K. Optimum design of steel structures, Springer, 2013.

  • [14]

    Tizani W. M. K. , Yusuf, K. O., Davies, G., Smith N. J. A knowledge based system to support joint fabrication decision making at the design stage - Case studies for CHS trusses, VII. Proc. of the Seventh International Symposium on Tubular Structures, Miskolc, Hungary, 2830 August 1996, Farkas J., Jármai K. (Eds), Rotterdam, Balkema, pp. 483489.

    • Search Google Scholar
    • Export Citation
  • [15]

    Iványi M. Ductility of steel structures: The model of interactive hinge, Pollack Periodica, Vol. 1, No. 1, 2006, pp. 534.

  • [16]

    Kota L. , Jármai K. Efficient algorithms for optimization of objects and systems, Pollack Periodica, Vol. 9, No. 1, 2014, pp. 121132.

    • Search Google Scholar
    • Export Citation
  • [17]

    Lasdon L. S. , Fox, R. L., Ratner M. W. Nonlinear optimization using the generalized reduced gradient method, Operations Research, Vol. 8, No. V3, 1974, pp. 73103.

    • Search Google Scholar
    • Export Citation

The author instructions template is available in MS Word.
Please, download the file from HERE.



  • Materials Science (miscellaneous) SJR Quartile Score (2018): Q3
  • Software SJR Quartile Score (2018): Q3
  • Scimago Journal Rank (2018): 0.219
  • SJR Hirsch-Index (2018): 9

Language: English

Founded in 2006, by the Pollack Mihály Faculty of Engineering, Unversity of Pécs
Publication: One volume of three issues annually
Publication Programme: 2020. Vol. 15.
Indexing and Abstracting Services:



Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Iványi, Amália

Editor(s)-in-Chief: Iványi, Péter

Scientific Secretary

Miklós M. Iványi

Editorial Board

  • B. Bachmann (Hungary)
  • J. Balogh (USA)
  • R. Bancila (Romania)
  • C.C. Baniotopolous (Greece)
  • O. Biro (Austria)
  • Á. Borsos (Hungary)
  • M. Bruggi (Italy)
  • J. Bujňák (Slovakia)
  • A. Csébfalvi (Hungary)
  • M. Devetakovic (Serbia)
  • Sz. Fischer (Hungary)
  • R. Folic (Serbia)
  • J. Frankovská (Slovakia)
  • J. Füzi† (Hungary)
  • J. Gyergyák (Hungary)
  • K. Hamayer (Germany)
  • E. Helerea (Romania)
  • Á. Hutter (Hungary)
  • K. Jármai (Hungary)
  • T.J. Kajtazi (Kosovo)
  • R. Kersner (Hungary)
  • R. Kiss (Hungary)
  • I. Kistelegdi (Hungary)
  • S. Kmet (Slovakia)
  • I. Kocsis (Hungary)
  • L. Kóczy (Hungary)
  • D. Kozak (Croatia)
  • Gy.L. Kovács (Hungary)
  • B.G. Kövesdi (Hungary)
  • T. Krejči (Czech Republic)
  • J. Kruis (Czech Republic)
  • M. Kuczmann (Hungary)
  • T. Kukai (Hungary)
  • M.J. Lamela Rey (Spain)
  • J. Lógó (Hungary)
  • C. Lungoci (Romania)
  • F. Magoules (France)
  • G. Medvegy (Hungary)
  • T. Molnár (Hungary)
  • F. Orbán (Hungary)
  • Z. Orbán (Hungary)
  • D. Rachinskii (Ireland)
  • C.H. Radha (Iraq)
  • M. Repetto (Italy)
  • G. Sierpiński (Poland)
  • Z. Siménfalvi (Hungary)
  • A. Šoltész (Slovakia)
  • Zs. Szabo (Hungary)
  • M. Sysyn (Germany)
  • A. Timár (Hungary)
  • B.H.V. Topping (UK)

Pollack Mihály Faculty of Engineering
Institute: University of Pécs
Address: Boszorkány utca 2. H–7624 Pécs, Hungary
Phone/Fax: (36 72) 503 650