View More View Less
  • 1,4 Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
  • 1 T. G. Masaryk Water Research Institute, p. r. i., Podbabská 2582/30, 160 00 Prague, Czech Republic
  • 2,3 Slovak University of Technology, Radlinského 11, 810 05 Bratislava
Restricted access

Purchase article

USD  $25.00

Purchase this article

USD  $387.00


The modeling of soil erosion processes is affected by several factors that reflect the physical-geographic conditions of the study site together with the land use linkage. The soil parameters are significant in the modeling of erosion and also runoff processes. The correct determination of a soil's parameters becomes a crucial part of the model's calibration. This paper deals with a sensitivity analysis of seven soil input parameters to the physically-based Erosion 3D model. The results show the variable influence of each soil parameter. The Erosion 3D model is very sensitive to initial soil moisture, bulk density, and erodibility.

  • [1]

    Pannell D. J. Sensitivity analysis of normative economic models: Theoretical framework and practical strategies, Agricultural Economics, Vol. 16, No. 2, 1997, pp. 139152.

    • Search Google Scholar
    • Export Citation
  • [2]

    Baird B. F. Managerial decisions under uncertainty: An introduction to the analysis of decision making, New York, Wiley, 1989.

  • [3]

    Saltelli A. , Tarantola, S., Campolongo, F., Ratto M. Sensitivity analysis in practice: A guide to assessing scientific models, Chichester, Wiley, 2004.

    • Search Google Scholar
    • Export Citation
  • [4]

    Saltelli A. , Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola S. Global sensitivity analysis: The primer, Chichester, Wiley, 2008.

    • Search Google Scholar
    • Export Citation
  • [5]

    Loucks D. P. , Beek E. Water resources systems planning and management: An introduction to methods, models and applications, Paris, UNESCO Publishing, 2005.

    • Search Google Scholar
    • Export Citation
  • [6]

    Schindewolf M. , Schmidt J. Parameterization of the erosion 2D/3D soil erosion model using a small-scale rainfall simulator and upstream runoff simulation, Catena, Vol. 91, 2012, pp. 4755.

    • Search Google Scholar
    • Export Citation
  • [7]

    Stumpf F. , Goebes, P., Schmidt, K., Schindewolf, M., Schönbrodt-Stitt S., Wadoux A., Xiang W., Scholten T. Sediment reallocations due to erosive rainfall events in the Three Gorges reservoir area, central China, Land Degradation and Development, Vol. 28, 2016, pp. 12121227.

    • Search Google Scholar
    • Export Citation
  • [8]

    Lenz J. , Yousuf, A., Schindewolf, M., von Werner M., Hartsch K., Singh M.J., Schmidt J. Parameterization for Erosion-3D model under simulated rainfall conditions in lower Shivaliks of India, Goesciences, Vol. 8, No. 11, 2018, pp. 396413.

    • Search Google Scholar
    • Export Citation
  • [9]

    Németová Z. , Honek D. Application of a physically-based erosion model in a small catchment of the Myjava river basin, Proceedings of the 29th conference of Young Hydrologists, Bratislava, Slovakia, 9–11 November 2017, pp. 113.

    • Export Citation
  • [10]

    Németová Z. , Honek D., Látková T., Šulc Michalková M., Kohnová S. An assessment of soil water erosion in the Myjava hill land: The application of a physically-based erosion model, Pollack Periodica, Vol. 13, No. 3, 2018, pp. 197208.

    • Search Google Scholar
    • Export Citation
  • [11]

    Labat, M. M., Korbel'ová, L., Kohnová, S., Hlavćová, K. Design of measures for soil erosion control and assessment of their effect on the reduction of peak flows, Pollack Periodica, Vol. 13, No. 3, 2018, pp. 209219.

    • Search Google Scholar
    • Export Citation
  • [12]

    Werner M. Erosion-3D, User manual, Ver. 3.1.1, Berlin, Geognostics, 2006.

  • [13]

    Schmidt J. A mathematical model to simulate rainfall erosion, in: Bork H. R., De Ploey J., Schick A. P. Erosion, Transport and deposition processes - theories and models, Catena Supplement 19, Cremlingen 1991, pp. 101109.

    • Search Google Scholar
    • Export Citation
  • [14]

    Schmidt J. Modeling long term soil loss and landform change, in: Parson A. J., Abrahams A. D. (Eds), Overland flow - Hydraulics and Erosion Mechacnis, University College London Press, London, 1992, pp. 389414.

    • Search Google Scholar
    • Export Citation
  • [15]

    Schmidt J. Development and application of a physically based simulation model for the erosion of agricultural land, (in German) Selbstverlag des Instituts für Geographische Wissenschaften, Berlin, 1996.

    • Search Google Scholar
    • Export Citation
  • [16]

    Kadlec V. , Dostál T., Vrána K., Kavka P., Krása J., Devátý J, Podhrázská J., Pochop M., Kulífová P., Heřmanovská D., Novotný I., Papaj V. Design of technical anti-erosion devices, (in Czech) Research Institute for Soil and Water Conservation, Czech Technical University in Pragues, 2014.

    • Search Google Scholar
    • Export Citation
  • [17]

    Dostál T. , Krása J., Kavka P., Vrána K., Devátý J., Kadlec V., Novotný I., Kulífová P., Hefmanovská D., Papaj V., Kapička J., Váńová V. Using GIS data and tools and simulation models to design TAEM, (in Czech) Research Institute for Soil and Water Conservation, Czech Technical University in Prague, 2014.

    • Search Google Scholar
    • Export Citation
  • [18]

    Janík A. , Šoltész A. Flash flood mitigation modeling - case study small Carpathians, Pollack Periodica, Vol. 12, No. 2, 2017, pp. 103116.

    • Search Google Scholar
    • Export Citation
  • [19]

    Michael A. Michael A. Application of physically-based erosion models EROSION 2D / 3D- Empirical approaches to determine model parameters, (in German) PhD Thesis, Technische Universität Bergakademie Freiberg, 2000.

    • Search Google Scholar
    • Export Citation

The author instructions template is available in MS Word.
Please, download the file from HERE.



  • Materials Science (miscellaneous) SJR Quartile Score (2018): Q3
  • Software SJR Quartile Score (2018): Q3
  • Scimago Journal Rank (2018): 0.219
  • SJR Hirsch-Index (2018): 9

Language: English

Founded in 2006, by the Pollack Mihály Faculty of Engineering, Unversity of Pécs
Publication: One volume of three issues annually
Publication Programme: 2020. Vol. 15.
Indexing and Abstracting Services:



Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Iványi, Amália

Editor(s)-in-Chief: Iványi, Péter

Scientific Secretary

Miklós M. Iványi

Editorial Board

  • B. Bachmann (Hungary)
  • J. Balogh (USA)
  • R. Bancila (Romania)
  • C.C. Baniotopolous (Greece)
  • O. Biro (Austria)
  • Á. Borsos (Hungary)
  • M. Bruggi (Italy)
  • J. Bujňák (Slovakia)
  • A. Csébfalvi (Hungary)
  • M. Devetakovic (Serbia)
  • Sz. Fischer (Hungary)
  • R. Folic (Serbia)
  • J. Frankovská (Slovakia)
  • J. Füzi† (Hungary)
  • J. Gyergyák (Hungary)
  • K. Hamayer (Germany)
  • E. Helerea (Romania)
  • Á. Hutter (Hungary)
  • K. Jármai (Hungary)
  • T.J. Kajtazi (Kosovo)
  • R. Kersner (Hungary)
  • R. Kiss (Hungary)
  • I. Kistelegdi (Hungary)
  • S. Kmet (Slovakia)
  • I. Kocsis (Hungary)
  • L. Kóczy (Hungary)
  • D. Kozak (Croatia)
  • Gy.L. Kovács (Hungary)
  • B.G. Kövesdi (Hungary)
  • T. Krejči (Czech Republic)
  • J. Kruis (Czech Republic)
  • M. Kuczmann (Hungary)
  • T. Kukai (Hungary)
  • M.J. Lamela Rey (Spain)
  • J. Lógó (Hungary)
  • C. Lungoci (Romania)
  • F. Magoules (France)
  • G. Medvegy (Hungary)
  • T. Molnár (Hungary)
  • F. Orbán (Hungary)
  • Z. Orbán (Hungary)
  • D. Rachinskii (Ireland)
  • C.H. Radha (Iraq)
  • M. Repetto (Italy)
  • G. Sierpiński (Poland)
  • Z. Siménfalvi (Hungary)
  • A. Šoltész (Slovakia)
  • Zs. Szabo (Hungary)
  • M. Sysyn (Germany)
  • A. Timár (Hungary)
  • B.H.V. Topping (UK)

Pollack Mihály Faculty of Engineering
Institute: University of Pécs
Address: Boszorkány utca 2. H–7624 Pécs, Hungary
Phone/Fax: (36 72) 503 650