View More View Less
  • 1 College of Dunaújváros Institute of Mechanical Engineering Táncsics M. u. 1/A H-2400 Dunaújváros Hungary
Restricted access

Purchase article

USD  $25.00

Purchase this article

USD  $387.00

The peridynamic material model (PMM) is a new way to describe the material failures with discontinuities. Earlier works, presented by S. Silling, F. Bubaru and etc. introduced the Linear Elastic Fracture Mechanics of peridynamic material. In the recent work, the isotropic hardening plastic extension of PMM is presented. To solve the nonlinear integral equations of the problem the modified Newton method is used with mesh-less spatial discretization. At last some example shows the similarities and different between the results of classical and peridynamic plasticity.

  • Silling S. A. Reformulation of elasticity theory for discontinuities and long-range forces, SAND98-2176, Sandia National Laboratories .

  • Silling S. A., Bobaru F. Peridynamic modeling of membranes and fibers, International Journal of Non-Linear Mechanics , Vol. 40, 2005, pp. 395–409.

    Bobaru F. , 'Peridynamic modeling of membranes and fibers ' (2005 ) 40 International Journal of Non-Linear Mechanics : 395 -409.

    • Search Google Scholar
  • Silling S. A., Askari E. A Meshfree method based on the peridynamic model of solid mechanics, Computers and Structures , Vol. 83, 2005, pp. 1526–1535.

    Askari E. , 'A Meshfree method based on the peridynamic model of solid mechanics ' (2005 ) 83 Computers and Structures : 1526 -1535.

    • Search Google Scholar
  • Ladányi G. Analisys of peridynamic material model with RBF method, Proceedings of the European Solid Mechanics Conference , 2006, Budapest, Hungary, pp. 310–312.

  • Gerstle W., Sau N., Silling S. Peridynamic modeling of concrete structures, Nuclear Engineering and Design , Vol. 237, 2007, pp. 1250–1258.

    Silling S. , 'Peridynamic modeling of concrete structures ' (2007 ) 237 Nuclear Engineering and Design : 1250 -1258.

    • Search Google Scholar
  • Eringen C. A. Non-local continuum field theories , Springer Verlag, New York, 2001.

    Eringen C. A. , '', in Non-local continuum field theories , (2001 ) -.

  • Emmrich E., Weckner O. The peridynmaic equation of motion in non-local elasticity theory, Proceedings of the III European Conference on Computational Mechanics Solids , Structures and Coupled Problems in Engineering, Lisbon, Portugal, 2006. pp. 19–39.

    Weckner O. , '', in Proceedings of the III European Conference on Computational Mechanics Solids , (2006 ) -.

    • Search Google Scholar
  • Simo, J. C., Hughes, T. Jr. Computational inelasticity , Springer Verlag, New York, 1998.

    Hughes T. , '', in Computational inelasticity , (1998 ) -.

  • Zienkiewicz O. C. The finite element method , Butterworth-Heinemann, Oxford, 2000.

    Zienkiewicz O. C. , '', in The finite element method , (2000 ) -.

  • Buchmann M. D. Radial basis functions , Cambridge University Press, Cambridge, 2004.

    Buchmann M. D. , '', in Radial basis functions , (2004 ) -.

The author instructions template is available in MS Word.
Please, download the file from HERE.

 

MANUSCRIPT SUBMISSION

  • Materials Science (miscellaneous) SJR Quartile Score (2018): Q3
  • Software SJR Quartile Score (2018): Q3
  • Scimago Journal Rank (2018): 0.219
  • SJR Hirsch-Index (2018): 9

Language: English

Founded in 2006, by the Pollack Mihály Faculty of Engineering, Unversity of Pécs
Publication: One volume of three issues annually
Publication Programme: 2020. Vol. 15.
Indexing and Abstracting Services:

  • SCOPUS

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Iványi, Amália

Editor(s)-in-Chief: Iványi, Péter


Scientific Secretary

Miklós M. Iványi

Editorial Board

  • B. Bachmann (Hungary)
  • J. Balogh (USA)
  • R. Bancila (Romania)
  • C.C. Baniotopolous (Greece)
  • O. Biro (Austria)
  • Á. Borsos (Hungary)
  • M. Bruggi (Italy)
  • J. Bujňák (Slovakia)
  • A. Csébfalvi (Hungary)
  • M. Devetakovic (Serbia)
  • Sz. Fischer (Hungary)
  • R. Folic (Serbia)
  • J. Frankovská (Slovakia)
  • J. Füzi† (Hungary)
  • J. Gyergyák (Hungary)
  • K. Hamayer (Germany)
  • E. Helerea (Romania)
  • Á. Hutter (Hungary)
  • K. Jármai (Hungary)
  • T.J. Kajtazi (Kosovo)
  • R. Kersner (Hungary)
  • R. Kiss (Hungary)
  • I. Kistelegdi (Hungary)
  • S. Kmet (Slovakia)
  • I. Kocsis (Hungary)
  • L. Kóczy (Hungary)
  • D. Kozak (Croatia)
  • Gy.L. Kovács (Hungary)
  • B.G. Kövesdi (Hungary)
  • T. Krejči (Czech Republic)
  • J. Kruis (Czech Republic)
  • M. Kuczmann (Hungary)
  • T. Kukai (Hungary)
  • M.J. Lamela Rey (Spain)
  • J. Lógó (Hungary)
  • C. Lungoci (Romania)
  • F. Magoules (France)
  • G. Medvegy (Hungary)
  • T. Molnár (Hungary)
  • F. Orbán (Hungary)
  • Z. Orbán (Hungary)
  • D. Rachinskii (Ireland)
  • C.H. Radha (Iraq)
  • M. Repetto (Italy)
  • G. Sierpiński (Poland)
  • Z. Siménfalvi (Hungary)
  • A. Šoltész (Slovakia)
  • Zs. Szabo (Hungary)
  • M. Sysyn (Germany)
  • A. Timár (Hungary)
  • B.H.V. Topping (UK)

POLLACK PERIODICA
Pollack Mihály Faculty of Engineering
Institute: University of Pécs
Address: Boszorkány utca 2. H–7624 Pécs, Hungary
Phone/Fax: (36 72) 503 650

E-mail: ivanyi.peter@pmmik.pte.hu 

or ivanyi@pmmik.pte.hu