Author: Gábor Winkler
View More View Less
  • 1 Szent János Kórház II. Belgyógyászat-Diabetológia Budapest Diós árok 1–3. 1125
  • | 2 Miskolci Egyetem, Egészségügyi Kar Elméleti Egészségtudományi Intézet Miskolc
Open access

A szulfanilureavegyületek közös vércukorcsökkentő hatásuk mellett számos tulajdonságukban különböznek egymástól. Korábbi adatok a második generációs származék, a gliclazid, csoporton belüli lehetséges előnyeiről számoltak be. Noha az ezzel kapcsolatos megfigyelések száma folyamatosan nő, újabb antidiabetikumok megjelenése miatt ezek az adatok kikerültek az érdeklődés előteréből. A közlemény áttekinti a rendelkezésre álló újabb kísérletes (receptoriális hatások, jelátviteli tényező aktiválásának hiánya, antioxidáns tulajdonság, a béta-sejt differenciálódásában szerepet játszó tényezők feltételezett serkentése), valamint farmakogenomikai adatokat és összeveti azokat a hatóanyaggal kapcsolatos klinikai tapasztalatokkal (hypoglykaemiaelőfordulás, cardiovascularis kimeneteli mutatók alakulása). Az összevetés megerősíti a gliclazid egyedi előnyét, mivel nem gátolja az ischaemiás prekondicionálást, pancreasszelektív, továbbá, más szulfanilureaszármazékokhoz képest mérsékli az atherogenesist, valamint a béta-sejt-vesztést. Bár ez a molekula sem mentes a szulfanilureákat általában jellemző hátrányoktól (vércukorszinttől független inzulinszekretagóg hatás, béta-sejt-depléció), sajátosságai előnyt jelenthetnek a csoporton belüli választás során. Orv. Hetil., 2014, 155(14), 541–548.

  • Proks, P., Reimann, F., Green, N., et al.: Sulfonylurea stimulation of insulin secretion. Diabetes, 2002, 51(Suppl. 3), S368–S376.

  • Gribble, F. M., Reimann, F.: Sulphonylurea action revisited: the post-cloning area. Diabetologia, 2003, 46(7), 875–891.

  • Riddle, M. C.: Sulphonylureas differ in effects on ischemic preconditioning – is it time to retire glyburide? J. Clin. Endocrinol. Metab., 2003, 88(2), 528–530.

  • Mannino, G. C., Sesti, G.: Individualized therapy for type 2 diabetes: clinical implications of pharmacogenetic data. Mol. Diagn. Ther., 2012, 16(5), 285–302.

  • Aquilante, C. L.: Sulfonylurea pharmacogenomics in type 2 diabetes: the influence of drug target and diabetes risk polymorphisms. Expert Rev. Cardiovasc. Ther., 2010, 8(3), 359–372.

  • Winkler, M., Stephan, D., Bieger, S., et al.: Testing the bipartite model of the sulfonylurea receptor binding site: binding of A-, B-, and A+B-site ligands. J. Pharmacol. Exp. Ther., 2007, 322(2), 701–708.

  • Katakami, N., Yamasaki, Y., Hayaishi-Okano, R., et al.: Metformin or gliclazide rather than glibenclamide attenuate progression of carotid intima-media thickness in subjects with type 2 diabetes. Diabetologia, 2004, 47(11), 1906–1913.

  • Schramm, T. K., Gislason, G. H., Vaag, A., et al.: Mortality and cardiovascular risk associated with different insulin secretagogues compared with metformin in type 2 diabetes with or without previous myocardial infarction: a nationwide study. Eur. Heart J., 2011, 32(15), 1900–1908.

  • Al Sifri, S., Basiounny, A., Echtay, A., et al.: The incidence of hypoglycaemia in Muslim patients with type 2 diabetes treated with sitagliptin or a sulphonylurea during Ramadan: a randomised trial. Int. J. Clin. Pract., 2011, 65(11), 1132–1140.

  • Aravind, S. R., Ismail, S. B., Balamurugan, R., et al.: Hypoglycemia in patients with type 2 diabetes from India and Malaysia treated with sitagliptin or a sulfonylurea during Ramadan: a randomized, pragmatic study. Curr. Med. Res. Opin., 2012, 28(8), 1289–1296.

  • Dart, C.: Selective block of KATP channels: why the anti-diabetic sulphonylureas and rosiglitazone have more in common than we thought. Br. J. Pharmacol., 2012, 167(1), 23–25.

  • Burke, M. A., Mutharasan, R. K., Ardehali, H.: The sulfonylurea receptor, an atypical ATP-binding cassette protein, and its regulation of the KATP channel. Circ. Res., 2008, 102(2), 164–176.

  • George, P., McCrimmon, R.: Diazoxide. Pract. Diabetes, 2012, 29(1), 36–37.

  • Skalska, J., Debska, G., Kunz, W. S., et al.: Antidiabetic sulphonylureas activate mitochondrial permeability transition in rat skeletal muscle. Br. J. Pharmacol., 2005, 145(6), 785–791.

  • Mironova, G. D., Negoda, A. E., Marinov, B. S., et al.: Functional distinctions between the mitochondrial ATP-dependent K+ channel (mitoKATP) and its inward rectifier subunit (mitoKIR). J. Biol. Chem., 2004, 279(31), 32562–32568.

  • Kang, G., Leech, C. A., Chepurny, O. G., et al.: Role of cAMP sensor Epac as a determinant of KATP channel ATP sensitivity in human pancreatic β-cells and rat INS-1 cells. J. Physiol., 2008, 586(5), 1307–1319.

  • Song, D. K., Aschroft, F. M.: Glimepiride block of cloned β-cell, cardiac and smooth muscle KATP channels. Br. J. Pharmacol., 2001, 133(1), 193–199.

  • Abdelmoneim, A. S., Hasenbank, S. E., Seubert, J. M., et al.: Variations in tissue selectivity amongst insulin secretagogues: a systematic review. Diabetes Obes. Metab., 2012, 14(2), 130–138.

  • Pantalone, K. M., Kattan, M. W., Yu, C., et al.: The risk of overall mortality in patients with type 2 diabetes receiving glipizide, glyburide, or glimepiride monotherapy. Diabetes Care, 2010, 33(6), 1224–1229.

  • Jarrard, R. E., Wang, Y., Salyer, A. E., et al.: Potentiation of sulfonylurea action by an EPAC-selective cAMP analog in INS-1 cells: comparison of tolbutamide and gliclazide, and a potential role for EPAC activation of a 2-APB sensitive Ca2+ influx. Mol. Pharmacol., 2013, 83(1), 191–205.

  • Seino, S., Takahashi, H., Takahashi, T., et al.: Treating diabetes today: a matter of selectivity of sulphonylureas. Diabetes Obes. Metab., 2012, 14(Suppl. 1), 9–13.

  • Leech, C. A., Dzhura, I., Chepurny, O. G., et al.: Facilitation of β-cell KATP channel sulfonylurea sensitivity by a cAMP analog selective for the cAMP-regulated guanine nucleotide exchange factor Epac. Islets, 2010, 2(2), 72–81.

  • Geng, X., Li, L., Bottino, R., et al.: Antidiabetic sulfonylurea stimulates insulin secretion independently of plasma membrane KATP channels. Am. J. Physiol. Endocrinol. Metab., 2007, 293(1), E293–E301.

  • Bozdoğan, Ö., Gonca, E., Suveren, E., et al.: Mechanisms of glybenclamide-mediated anti-arrhythmia and ischemic conditioning in a rat model of myocardial infarction: role of yohimbine treatment. Turk. J. Med. Sci., 2004, 34, 21–28.

  • Najeed, S. A., Khan, I. A., Molnar, J., et al.: Differential effect of glyburide (glibenclamide) and metformin on QT dispersion: a potential adenosine triphosphate sensitive K+ channel effect. Am. J. Cardiol., 2002, 90(10), 1103–1106.

  • Nagasaka, S., Taniguchi, A., Aiso, Y., et al.: Effect of glimepiride on serum adiponectin level in subjects with type 2 diabetes. Diabetes Care, 2003, 26(7), 2215–2216.

  • Araki, T., Emoto, M., Konishi, T., et al: Glimepiride increases high-density lipoprotein cholesterol via increasing adiponectin levels in type 2 diabetes mellitus. Metabolism, 2009, 58(2), 143–148.

  • Yoshioka, K., Yoshida, T., Yoshikawa, T.: Glimepiride and serum adiponectin level in type 2 diabetic subjects. Response to Nagasaka, et al. Diabetes Care, 2003, 26(12), 3360–3361.

  • Del Guerra, S., D’Aleo, V., Lupi, R., et al.: Effects of exposure of human islet beta-cells to normal and high glucose levels with or without gliclazide and glibenclamide. Diabetes Metab., 2009, 35(4), 293–298.

  • Räkel, A., Renier, G., Roussin, A., et al.: Beneficial effects of gliclazide modified release compared with glibenclamide on endothelial activation and low-grade inflammation in patients with type 2 diabetes. Diabetes Obes. Metab., 2007, 9(1), 127–129.

  • El-Baroudy, N. H. F., Fayed, F. A., Sekinah, A. M. M., et al.: Some possible interactions between gliclazide and nebivolol in experimentally induced diabetic hypertensive albino rats. ZUMJ, 2013, 19(5), 397–409.

  • Sena, C. M., Louro, T., Matafome, P., et al.: Antioxidant and vascular effects of gliclazide in type 2 diabetic rats fed high-fat diet. Physiol. Res., 2009, 58(2), 203–209.

  • Salman, I. M., Inamdar, M. N.: Effect of gliclazide on cardiovascular risk factors involved in split-dose streptozotocin induced neonatal rat model: a chronic study. Int. J. Basic Clin. Pharmacol., 2012, 1(3), 196–201.

  • Kumar, N., Dey, C. S.: Gliclazide increases insulin receptor tyrosine phosphorylation but not p38 phosphorylation in insulin-resistant skeletal muscle cells. J. Exp. Biol., 2002, 205(Pt 23), 3739–3746.

  • Juhl, C. B., Pørksen, N., Pincus, S. M., et al.: Acute and short-term administration of a sulfonylurea (gliclazide) increases pulsatile insulin secretion in type 2 diabetes. Diabetes, 2001, 50(8), 1778–1784.

  • Kirchheiner, J., Roots, I., Goldammer, M., et al.: Effect of genetic polymorphisms in cytochrome P450 (CYP) 2C9 and CYP2C8 on the pharmacokinetics of oral antidiabetic drugs. Clin. Pharmacokinet., 2005, 44(12), 1209–1225.

  • Mannino, G. C., Sesti, G.: Individualized therapy for type 2 diabetes: clinical implications of pharmacogenetic data. Mol. Diagn. Ther, 2012, 16(5), 285–302.

  • Winkler, G., Gerő, L.: Pharmacogenetics of insulin secretagogue antidiabetics. [Az inzulinszekretagóg antidiabetikumok farmakogenetikai vonatkozásai.] Orv. Hetil., 2011, 152(41), 1651–1660. [Hungarian]

  • Zhang, Y., Si, D., Chen, X., et al.: Influence of CYP2C9 and CYP2C19 genetic polymorphisms on pharmacokinetics of gliclazide MR in Chinese subjects. Br. J. Clin. Pharmacol., 2007, 64(1), 67–74.

  • Xu, H., Williams, K. M., Liauw, W. S., et al.: Effects of St John’s wort and CYP2C9 genotype on the pharmacokinetics and pharmacodynamics of gliclazide. Br. J. Pharmacol., 2008, 153(7), 1579–1586.

  • Scheen, A. J.: Drug interactions of clinical importance with antihyperglycaemic agents: an update. Drug Saf., 2005, 28(7), 601–631.

  • Gloyn, A. L., Weedon, M. N., Owen, K. R., et al.: Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes, 2003, 52(2), 568–572.

  • Tessier, D., Dawson, K., Tétrault, J. P., et al.: Glibenclamide vs gliclazide in type 2 diabetes of the elderly. Diabet. Med., 1994, 11(10), 974–980.

  • Zeller, M., Danchin, N., Simon, D., et al.: Impact of type of preadmission sulfonylureas on mortality and cardiovascular outcomes in diabetic patients with acute myocardial infarction. J. Clin. Endocrinol. Metab., 2010, 95(11), 4993–5002.

  • Szymborska-Kajanek, A., Górska, J., Wróbel, M., et al.: Glucose and insulin profiles in type 2 diabetic patients treated with gliclazide MR and glimepiride: an 8-week, randomised, single-centre, open-label, controlled, cross-over study. Diabetologia Doświadczalna i Kliniczna, 2007, 7(1), 33–38.

  • Schernthaner, G., Grimaldi, A., DiMario, U., et al.: GUIDE study: double-blind comparison of once-daily gliclazide MR and glimepiride in type 2 diabetic patients. Eur. J. Clin. Invest., 2004, 34(8), 535–542.

  • Lu, C. H., Chang, C. C., Chuang, L. M., et al.: Double-blind, randomized, multicentre study of the efficacy and safety of gliclazide-modified release in the treatment of Chinese type 2 diabetic patients. Diabetes Obes. Metab., 2006, 8(2), 184–191.

  • Ruiz, M.: Diamicron (gliclazide) MR the secretagogue with clinical benefits beyond insulin secretion. Medicographia, 2013, 35, 81–89.

  • Heller, S. R., on behalf of the ADVANCE Collaborative Group: A summary of the ADVANCE trial. Diabetes Care, 2009, 32(Suppl. 2), S357–S361.

  • Khalangot, M., Tronko, M., Kravchenko, V., et al.: Glibenclamide-related excess in total and cardiovascular mortality risks: data from large Ukrainian observational cohort study. Diabetes Res. Clin. Pract., 2009, 86(3), 247–253.

  • Harrower, A. D.: Comparison of efficacy, secondary failure rate, and complications of sulfonylureas. J. Diabetes Complications, 1994, 8(4), 201–203.

  • Harrower, A. D: Comparative tolerability of sulphonylureas in diabetes mellitus. Drug Saf., 2000, 22(4), 313–320.

  • Resource Pharm: Some common substrates, inhibitors and inducers of CYP 450 iso-enzymes. http://www.resourcepharm.com/pre-reg-articles/substrates-inhibitors-and-inducers-of-the-major-CYP450-enzyme.pdf

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 32 30 4
PDF Downloads 78 73 14