View More View Less
  • 1 Szegedi Tudományegyetem, Általános Orvostudományi Kar Klinikai Mikrobiológiai Diagnosztikai Intézet Szeged Pf. 427 6701
  • 2 Semmelweis Egyetem, Általános Orvostudományi Kar Laboratóriumi Medicina Intézet, Klinikai Mikrobiológiai Diagnosztikai Laboratórium Budapest
  • 3 Debreceni Egyetem, Általános Orvostudományi Kar Orvosi Mikrobiológiai Intézet Debrecen
Open access

A mikrobiológiai diagnosztika területén kevés technikai fejlesztés volt az elmúlt évtizedekben, amely olyan rohamos fejlődést hozott volna a baktériumok és gombák fajszintű (speciesszintű) identifikálásában, mint a „matrix-assisted laser desorption ionization time-of-flight” tömegspektrometria. A klinikai mikrobiológiai gyakorlatban ennek jelentősége felbecsülhetetlen, hiszen a kórokozó ismerete jelentősen befolyásolja a terápiás választást még az antimikrobás szerrel szembeni rezisztencia meghatározása előtt. A hagyományos speciesmeghatározás számos, a környezeti hatások által befolyásolt biokémiai reakción alapszik és sok esetben igen időigényes folyamat. A speciális tömegspektrometriás módszer néhány perc alatt elvégzi a kitenyésztett baktérium vagy gomba pontos identifikálását a konzervált riboszomális fehérjék tömegspektrometriás mérése alapján. Emellett a módszer alkalmazásának lehetőségét számos más új területen is kutatják. Így például a pozitív hemokultúrákból történő direkt kórokozó-meghatározás segítségével hamarabb megkezdhető a szeptikus beteg célzott antibiotikumkezelése. Lehetőség van a kórokozó direkt azonosítására pozitív vizeletmintából, esetleg egyébként steril testnedvekből, vagy megkísérelhető szelektív dúsítást követően Salmonella kimutatása székletből. Az izolált baktériumok „extended spectrum beta-lactamase” és karbapenemáztermelésének gyors kimutatása segítheti a terápiás választást. Ez a tömegspektrometriás módszer a közeljövőben a klinikai mikrobiológiai diagnosztika más területein is teret nyerhet, így például használható lehet a dezoxiribonukleinsav és a ribonukleinsav analízisére, gyors komplett rezisztencia meghatározására és más proteomikai alkalmazásokra is. A közlemény rövid áttekintést kíván adni ennek az új technikának a klinikai mikrobiológiai diagnosztikában való jelenlegi alkalmazhatóságáról. Orv. Hetil., 2014, 155(38), 1495–1503.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Siuzdak, G.: The emergence of mass spectrometry in biochemical research. Proc. Natl. Acad. Sci. USA, 1994, 91(24), 11290–11297.

  • Lewis, J. K., Wei, J., Siuzdak, G.: Matrix-assisted laser desorption/ionization mass spectrometry in peptide and protein analysis. In: Meyers, R. A. (ed.): Encyclopedia of Analytical Chemistry. John Wiley&Sons Ltd, Chichester, 2000, 5880–5894.

  • Bizzini, A., Greub, G.: Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification. Clin. Microbiol. Infect., 2010, 16(11), 1614–1619.

  • Wieser, A., Schneider, L., Jung, J., et al.: MALDI-TOF MS in microbiological diagnostics-identification of microorganisms and beyond (mini review). Appl. Microbiol. Biotechnol., 2012, 93(3), 965–974.

  • Seng, P., Abat, C., Rolain, J. M., et al.: Identification of rare pathogenic bacteria in a clinical microbiology laboratory: impact of matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J. Clin. Microbiol., 2013, 51(7), 2182–2194.

  • McElvania TeKippe, E., Shuey, S., Winkler, D. W., et al.: Optimizing identification of clinically relevant Gram-positive organisms by use of the Bruker Biotyper matrix-assisted laser desorption ionization – time of flight mass spectrometry system. J. Clin. Microbiol., 2013, 51(5), 1421–1427.

  • Lartigue, M. F.: Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for bacterial strain characterization. Infect. Genet. Evol., 2013, 13, 230–235.

  • Ford, B. A., Burnham, C. A.: Optimization of routine identification of clinically relevant Gram-negative bacteria by use of matrix-assisted laser desorption ionization–time of flight mass spectrometry and the Bruker Biotyper. J. Clin. Microbiol., 2013, 51(5), 1412–1420.

  • Jacquier, H., Carbonnelle, E., Corvec, S., et al.: Revisited distribution of nonfermenting Gram-negative bacilli clinical isolates. Eur. J. Clin. Microbiol. Infect. Dis., 2011, 30(12), 1579–1586.

  • Schaumann, R., Knoop, N., Genzel, G. H., et al.: Discrimination of Enterobacteriaceae and non-fermenting Gram negative bacilli by MALDI-TOF mass spectrometry. Open. Microbiol. J., 2013, 7, 118–122.

  • Machen, A., Kobayashi, M., Connelly, M. R., et al.: Comparison of heat inactivation and cell disruption protocols for identification of mycobacteria from solid culture media by use of Vitek matrix-assisted laser desorption ionization–time of flight mass spectrometry. J. Clin. Microbiol., 2013, 51(12), 4226–4229.

  • Buchan, B. W., Riebe, K. M., Timke, M., et al.: Comparison of MALDI-TOF MS with HPLC and nucleic acid sequencing for the identification of Mycobacterium species in cultures using solid medium and broth. Am. J. Clin. Pathol., 2014, 141(1), 25–34.

  • Mather, C. A., Rivera, S. F., Butler-Wu, S. M.: Comparison of the Bruker Biotyper and Vitek MS matrix-assisted laser desorption ionization–time of flight mass spectrometry systems for identification of mycobacteria using simplified protein extraction protocols. J. Clin. Microbiol., 2014, 52(1), 130–138.

  • Chen, J. H., Yam, W. C., Ngan, A. H., et al.: Advantages of using matrix-assisted laser desorption ionization–time of flight mass spectrometry as a rapid diagnostic tool for identification of yeasts and mycobacteria in the clinical microbiological laboratory. J. Clin. Microbiol., 2013, 51(12), 3981–3987.

  • Verroken, A., Janssens, M., Berhin, C., et al.: Evaluation of matrix-assisted laser desorption ionization–time of flight mass spectrometry for identification of Nocardia species. J. Clin. Microbiol., 2010, 48(11), 4015–4021.

  • Nagy, E., Maier, T., Urban, E.: Species identification of clinical isolates of Bacteroides by matrix-assisted laser-desorption/ionization–time of flight mass spectrometry. Clin. Microbiol. Infect., 2009, 15(8), 796–802.

  • Wybo, I., Soetens, O., De Bel, A., et al.: Species identification of clinical Prevotella isolates by matrix-assisted laser desorption ionization–time of flight mass spectrometry. J. Clin. Microbiol., 2012, 50(4), 1415–1418.

  • Veloo, A. C., Erhard, M., Welker, M., et al.: Identification of Gram-positive anaerobic cocci by MALDI-TOF mass spectrometry. Syst. Appl. Microbiol., 2011, 34(1), 58–62.

  • Barreau, M., Pagnier, I., La Scola, B.: Improving the identification of anaerobes in the clinical microbiology laboratory through MALDI-TOF mass spectrometry. Anaerobe, 2013, 22, 123–125.

  • Stîngu, C. S., Rodloff, A. C., Jentsch, H., et al.: Rapid identification of oral anaerobic bacteria cultivated from subgingival biofilm by MALDI-TOF MS. Oral Microbiol. Immunol., 2008, 23(5), 372–376.

  • Grosse-Herrenthey, A., Maier, T., Gessler, F., et al.: Challenging the problem of clostridial identification with matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI–TOF MS). Anaerobe, 2008, 14(4), 242–249.

  • Ikryannikova, L. N., Filimonova, A. V., Malakhova, M. V., et al.: Discrimination between Streptococcus pneumoniae and Streptococcus mitis based on sorting of their MALDI mass spectra. Clin. Microbiol. Infect., 2013, 19(11), 1066–1071.

  • Tan, K. E., Ellis, B. C., Lee, R., et al.: Prospective evaluation of a matrix-assisted laser desorption ionization – time of flight mass spectrometry system in a hospital clinical microbiology laboratory for identification of bacteria and yeasts: a bench-by-bench study for assessing the impact on time to identification and cost-effectiveness. J. Clin. Microbiol., 2012, 50(10), 3301–3308.

  • Morrell, M., Fraser, V. J., Kollef, M. H.: Delaying the empiric treatment of Candida bloodstream infection until positive blood culture results are obtained: a potential risk factor for hospital mortality. Antimicrob. Agents Chemother., 2005, 49(9), 3640–3645.

  • Cassagne, C., Cella, A. L., Suchon, P., et al.: Evaluation of four pretreatment procedures for MALDI-TOF MS yeast identification in the routine clinical laboratory. Med. Mycol., 2013, 51(4), 371–377.

  • De Carolis, E., Hensgens, L. A., Vella, A., et al.: Identification and typing of the Candida parapsilosis complex: MALDI-TOF MS vs. AFLP. Med. Mycol., 2014, 52(2), 123–130.

  • Hof, H., Eigner, U., Maier, T., et al.: Differentiation of Candida dubliniensis from Candida albicans by means of MALDI-TOF mass spectrometry. Clin. Lab., 2012, 58(9–10), 927–931.

  • Lacroix, C., Gicquel, A., Sendid, B., et al.: Evaluation of two matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems for the identification of Candida species. Clin. Microbiol. Infect., 2014, 20(2), 153–158.

  • Lau, A. F., Drake, S. K., Calhoun, L. B., et al.: Development of a clinically comprehensive database and a simple procedure for identification of molds from solid media by matrix-assisted laser desorption ionization–time of flight mass spectrometry. J. Clin. Microbiol., 2013, 51(3), 828–834.

  • Seibold, E., Maier, T., Kostrzewa, M., et al.: Identification of Francisella tularensis by whole-cell matrix-assisted laser desorption ionization–time of flight mass spectrometry: fast, reliable, robust and cost-effective differentiation on species and subspecies levels. J. Clin. Microbiol., 2010, 48(4), 1061–1069.

  • Fujinami, Y., Kikkawa, H. S., Kurosaki, Y., et al.: Rapid discrimination of legionella by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Microbiol. Res., 2011, 166(2), 77–86.

  • Vanlaere, E., Sergeant, K., Dawyndt, P., et al.: Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry of intact cells allows rapid identification of Burkholderia cepacia complex. J. Microbiol. Methods, 2008, 75(2), 279–286.

  • Stephan, R., Cernela, N., Ziegler, D., et al.: Rapid species specific identification and subtyping of Yersinia enterocolitica by MALDI-TOF mass spectormetry. J. Microbiol. Methods, 2011, 87(2), 150–153.

  • Lartigue, M. F., Kostrzewa, M., Salloum, M., et al.: Rapid detection of “highly virulent” group B Streptococcus ST-17 and emerging ST-1 clones by MALDI-TOF mass spectrometry. J. Microbiol. Methods, 2011, 86(2), 262–265.

  • Nagy, E., Becker, S., Sóki, J., et al.: Differentiation of division I (cfiA-negative) and division II (cfiA-positive) Bacteroides fragilis strains by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Med. Microbiol., 2011, 60(11), 1584–1590.

  • Nagy, E., Urbán, E., Becker, S., et al.: MALDI-TOF MS fingerprinting facilitates rapid discrimination of phylotypes I, II and III of Propionibacterium acnes. Anaerobe, 2013, 20, 20–26.

  • Barbuddhe, S. B., Maier, T., Schwarz, G., et al.: Rapid identification and typing of Listeria species by matrix-assisted laser desorption ionization time of flight mass spectrometry. Appl. Environ. Microbiol., 2008, 74(17), 5402–5407.

  • Reil, M., Erhard, M. Kuijper, E. J., et al.: Recognition of Clostridium difficile PCR-ribotypes 001, 027, and 126/078 using an extended MALDI-TOF MS system. Eur. J. Clin. Microbiol. Infect. Dis., 2011, 30(11), 1431–1436.

  • Wolters, M., Rohde, H., Maier, T., et al.: MALDI-TOF MS fingerprinting allows for discrimination of major methicillin-resistant Staphylococcus aureus lineages. Int. J. Med. Microbiol., 2011, 301(1), 64–68.

  • Shitikov, E., Ilina, E., Chernousova, L., et al.: Mass spectrometry based mathods for the discrimination and typing of mycobacteria. Infect. Genet. Evol., 2012, 12(4), 838–845.

  • Wimmer, J. L., Long, S. W., Cernoch, P., et al.: Strategy for rapid identification and antibiotic susceptibility testing of Gram-negative bacteria directly recovered from positive blood cultures using the Bruker MALDI Biotyper and the BD Phoenix system. J. Clin. Microbiol., 2012, 50(7), 2452–2454.

  • Ferroni, A., Suarez, S., Beretti, J. L., et al.: Real-time identification of bacteria and Candida species in positive blood culture broths by matrix-assisted laser desorption ionization–time of flight mass spectrometry. J. Clin. Microbiol., 2010, 48(5), 1542–1548.

  • Hrabák, J., Studentová, V., Walková, R., et al.: Detection of NDM-1, VIM-1, KPC, OXA-48, and OXA-162 carbapenemases by matrix-assisted laser desorption ionization–time of flight mass spectrometry. J. Clin. Microbiol., 2012, 50(7), 2441–2443.

  • Sparbier, K., Lange, C., Jung, J., et al.: MALDI Biotyper-based rapid resistance detection by stable-isotope labeling. J. Clin. Microbiol., 2013, 51(11), 3741–3748.

  • Demirev, P. A., Hagan, N, S., Antoine, M. D., et al.: Establishing drug resistance in microorganisms by mass spectrometry. J. Am. Soc. Mass Spectrom., 2013, 24(8), 1194–1201.

  • Johansson, A., Nagy, E., Sóki, J.: Detection of carbapenemase activities of Bacteroides fragilis strains with matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS). Anaerobe, 2014, 26, 49–52.

  • Zhang, R., Long, Y., He, W., et al.: Application status of MALDI-TOF mass spectrometry in the identification and drug resistance of mycobacterium tuberculosis. J. Thorac. Dis., 2014, 6(5), 512–516.

  • Vella, A., De Carolis, E., Vaccaro, L., et al.: Rapid antifungal susceptibility testing by matrix-assisted laser desorption ionization–time of flight mass spectrometry analysis. J. Clin. Microbiol., 2013, 51(9), 2964–2969.

  • Ferreira, L., Sánchez-Juanes, F., Muñoz-Bellido, J. L., et al.: Rapid method for direct identification of bacteria in urine and blood culture samples by matrix-assisted laser desorption ionization time-of-flight mass spectrometry: intact cell vs. extraction method. Clin. Microbiol. Infect., 2011, 17(7), 1007–1012.

  • Sparbier, K., Weller, U., Boogen, C., et al.: Rapid detection of Salmonella sp. by means of a combination of selective enrichment broth and MALDI-TOF MS. Eur. J. Clin. Microbiol. Infect. Dis., 2012, 31(5), 767–773.