View More View Less
  • 1 Szegedi Tudományegyetem, Általános Orvostudományi Kar Klinikai Mikrobiológiai Diagnosztikai Intézet Szeged Pf. 427 6701
  • 2 Semmelweis Egyetem, Általános Orvostudományi Kar Laboratóriumi Medicina Intézet, Klinikai Mikrobiológiai Diagnosztikai Laboratórium Budapest
  • 3 Debreceni Egyetem, Általános Orvostudományi Kar Orvosi Mikrobiológiai Intézet Debrecen
Open access

A mikrobiológiai diagnosztika területén kevés technikai fejlesztés volt az elmúlt évtizedekben, amely olyan rohamos fejlődést hozott volna a baktériumok és gombák fajszintű (speciesszintű) identifikálásában, mint a „matrix-assisted laser desorption ionization time-of-flight” tömegspektrometria. A klinikai mikrobiológiai gyakorlatban ennek jelentősége felbecsülhetetlen, hiszen a kórokozó ismerete jelentősen befolyásolja a terápiás választást még az antimikrobás szerrel szembeni rezisztencia meghatározása előtt. A hagyományos speciesmeghatározás számos, a környezeti hatások által befolyásolt biokémiai reakción alapszik és sok esetben igen időigényes folyamat. A speciális tömegspektrometriás módszer néhány perc alatt elvégzi a kitenyésztett baktérium vagy gomba pontos identifikálását a konzervált riboszomális fehérjék tömegspektrometriás mérése alapján. Emellett a módszer alkalmazásának lehetőségét számos más új területen is kutatják. Így például a pozitív hemokultúrákból történő direkt kórokozó-meghatározás segítségével hamarabb megkezdhető a szeptikus beteg célzott antibiotikumkezelése. Lehetőség van a kórokozó direkt azonosítására pozitív vizeletmintából, esetleg egyébként steril testnedvekből, vagy megkísérelhető szelektív dúsítást követően Salmonella kimutatása székletből. Az izolált baktériumok „extended spectrum beta-lactamase” és karbapenemáztermelésének gyors kimutatása segítheti a terápiás választást. Ez a tömegspektrometriás módszer a közeljövőben a klinikai mikrobiológiai diagnosztika más területein is teret nyerhet, így például használható lehet a dezoxiribonukleinsav és a ribonukleinsav analízisére, gyors komplett rezisztencia meghatározására és más proteomikai alkalmazásokra is. A közlemény rövid áttekintést kíván adni ennek az új technikának a klinikai mikrobiológiai diagnosztikában való jelenlegi alkalmazhatóságáról. Orv. Hetil., 2014, 155(38), 1495–1503.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Siuzdak, G.: The emergence of mass spectrometry in biochemical research. Proc. Natl. Acad. Sci. USA, 1994, 91(24), 11290–11297.

  • Lewis, J. K., Wei, J., Siuzdak, G.: Matrix-assisted laser desorption/ionization mass spectrometry in peptide and protein analysis. In: Meyers, R. A. (ed.): Encyclopedia of Analytical Chemistry. John Wiley&Sons Ltd, Chichester, 2000, 5880–5894.

  • Bizzini, A., Greub, G.: Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification. Clin. Microbiol. Infect., 2010, 16(11), 1614–1619.

  • Wieser, A., Schneider, L., Jung, J., et al.: MALDI-TOF MS in microbiological diagnostics-identification of microorganisms and beyond (mini review). Appl. Microbiol. Biotechnol., 2012, 93(3), 965–974.

  • Seng, P., Abat, C., Rolain, J. M., et al.: Identification of rare pathogenic bacteria in a clinical microbiology laboratory: impact of matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J. Clin. Microbiol., 2013, 51(7), 2182–2194.

  • McElvania TeKippe, E., Shuey, S., Winkler, D. W., et al.: Optimizing identification of clinically relevant Gram-positive organisms by use of the Bruker Biotyper matrix-assisted laser desorption ionization – time of flight mass spectrometry system. J. Clin. Microbiol., 2013, 51(5), 1421–1427.

  • Lartigue, M. F.: Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for bacterial strain characterization. Infect. Genet. Evol., 2013, 13, 230–235.

  • Ford, B. A., Burnham, C. A.: Optimization of routine identification of clinically relevant Gram-negative bacteria by use of matrix-assisted laser desorption ionization–time of flight mass spectrometry and the Bruker Biotyper. J. Clin. Microbiol., 2013, 51(5), 1412–1420.

  • Jacquier, H., Carbonnelle, E., Corvec, S., et al.: Revisited distribution of nonfermenting Gram-negative bacilli clinical isolates. Eur. J. Clin. Microbiol. Infect. Dis., 2011, 30(12), 1579–1586.

  • Schaumann, R., Knoop, N., Genzel, G. H., et al.: Discrimination of Enterobacteriaceae and non-fermenting Gram negative bacilli by MALDI-TOF mass spectrometry. Open. Microbiol. J., 2013, 7, 118–122.

  • Machen, A., Kobayashi, M., Connelly, M. R., et al.: Comparison of heat inactivation and cell disruption protocols for identification of mycobacteria from solid culture media by use of Vitek matrix-assisted laser desorption ionization–time of flight mass spectrometry. J. Clin. Microbiol., 2013, 51(12), 4226–4229.

  • Buchan, B. W., Riebe, K. M., Timke, M., et al.: Comparison of MALDI-TOF MS with HPLC and nucleic acid sequencing for the identification of Mycobacterium species in cultures using solid medium and broth. Am. J. Clin. Pathol., 2014, 141(1), 25–34.

  • Mather, C. A., Rivera, S. F., Butler-Wu, S. M.: Comparison of the Bruker Biotyper and Vitek MS matrix-assisted laser desorption ionization–time of flight mass spectrometry systems for identification of mycobacteria using simplified protein extraction protocols. J. Clin. Microbiol., 2014, 52(1), 130–138.

  • Chen, J. H., Yam, W. C., Ngan, A. H., et al.: Advantages of using matrix-assisted laser desorption ionization–time of flight mass spectrometry as a rapid diagnostic tool for identification of yeasts and mycobacteria in the clinical microbiological laboratory. J. Clin. Microbiol., 2013, 51(12), 3981–3987.

  • Verroken, A., Janssens, M., Berhin, C., et al.: Evaluation of matrix-assisted laser desorption ionization–time of flight mass spectrometry for identification of Nocardia species. J. Clin. Microbiol., 2010, 48(11), 4015–4021.

  • Nagy, E., Maier, T., Urban, E.: Species identification of clinical isolates of Bacteroides by matrix-assisted laser-desorption/ionization–time of flight mass spectrometry. Clin. Microbiol. Infect., 2009, 15(8), 796–802.

  • Wybo, I., Soetens, O., De Bel, A., et al.: Species identification of clinical Prevotella isolates by matrix-assisted laser desorption ionization–time of flight mass spectrometry. J. Clin. Microbiol., 2012, 50(4), 1415–1418.

  • Veloo, A. C., Erhard, M., Welker, M., et al.: Identification of Gram-positive anaerobic cocci by MALDI-TOF mass spectrometry. Syst. Appl. Microbiol., 2011, 34(1), 58–62.

  • Barreau, M., Pagnier, I., La Scola, B.: Improving the identification of anaerobes in the clinical microbiology laboratory through MALDI-TOF mass spectrometry. Anaerobe, 2013, 22, 123–125.

  • Stîngu, C. S., Rodloff, A. C., Jentsch, H., et al.: Rapid identification of oral anaerobic bacteria cultivated from subgingival biofilm by MALDI-TOF MS. Oral Microbiol. Immunol., 2008, 23(5), 372–376.

  • Grosse-Herrenthey, A., Maier, T., Gessler, F., et al.: Challenging the problem of clostridial identification with matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI–TOF MS). Anaerobe, 2008, 14(4), 242–249.

  • Ikryannikova, L. N., Filimonova, A. V., Malakhova, M. V., et al.: Discrimination between Streptococcus pneumoniae and Streptococcus mitis based on sorting of their MALDI mass spectra. Clin. Microbiol. Infect., 2013, 19(11), 1066–1071.

  • Tan, K. E., Ellis, B. C., Lee, R., et al.: Prospective evaluation of a matrix-assisted laser desorption ionization – time of flight mass spectrometry system in a hospital clinical microbiology laboratory for identification of bacteria and yeasts: a bench-by-bench study for assessing the impact on time to identification and cost-effectiveness. J. Clin. Microbiol., 2012, 50(10), 3301–3308.

  • Morrell, M., Fraser, V. J., Kollef, M. H.: Delaying the empiric treatment of Candida bloodstream infection until positive blood culture results are obtained: a potential risk factor for hospital mortality. Antimicrob. Agents Chemother., 2005, 49(9), 3640–3645.

  • Cassagne, C., Cella, A. L., Suchon, P., et al.: Evaluation of four pretreatment procedures for MALDI-TOF MS yeast identification in the routine clinical laboratory. Med. Mycol., 2013, 51(4), 371–377.

  • De Carolis, E., Hensgens, L. A., Vella, A., et al.: Identification and typing of the Candida parapsilosis complex: MALDI-TOF MS vs. AFLP. Med. Mycol., 2014, 52(2), 123–130.

  • Hof, H., Eigner, U., Maier, T., et al.: Differentiation of Candida dubliniensis from Candida albicans by means of MALDI-TOF mass spectrometry. Clin. Lab., 2012, 58(9–10), 927–931.

  • Lacroix, C., Gicquel, A., Sendid, B., et al.: Evaluation of two matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems for the identification of Candida species. Clin. Microbiol. Infect., 2014, 20(2), 153–158.

  • Lau, A. F., Drake, S. K., Calhoun, L. B., et al.: Development of a clinically comprehensive database and a simple procedure for identification of molds from solid media by matrix-assisted laser desorption ionization–time of flight mass spectrometry. J. Clin. Microbiol., 2013, 51(3), 828–834.

  • Seibold, E., Maier, T., Kostrzewa, M., et al.: Identification of Francisella tularensis by whole-cell matrix-assisted laser desorption ionization–time of flight mass spectrometry: fast, reliable, robust and cost-effective differentiation on species and subspecies levels. J. Clin. Microbiol., 2010, 48(4), 1061–1069.

  • Fujinami, Y., Kikkawa, H. S., Kurosaki, Y., et al.: Rapid discrimination of legionella by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Microbiol. Res., 2011, 166(2), 77–86.

  • Vanlaere, E., Sergeant, K., Dawyndt, P., et al.: Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry of intact cells allows rapid identification of Burkholderia cepacia complex. J. Microbiol. Methods, 2008, 75(2), 279–286.

  • Stephan, R., Cernela, N., Ziegler, D., et al.: Rapid species specific identification and subtyping of Yersinia enterocolitica by MALDI-TOF mass spectormetry. J. Microbiol. Methods, 2011, 87(2), 150–153.

  • Lartigue, M. F., Kostrzewa, M., Salloum, M., et al.: Rapid detection of “highly virulent” group B Streptococcus ST-17 and emerging ST-1 clones by MALDI-TOF mass spectrometry. J. Microbiol. Methods, 2011, 86(2), 262–265.

  • Nagy, E., Becker, S., Sóki, J., et al.: Differentiation of division I (cfiA-negative) and division II (cfiA-positive) Bacteroides fragilis strains by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Med. Microbiol., 2011, 60(11), 1584–1590.

  • Nagy, E., Urbán, E., Becker, S., et al.: MALDI-TOF MS fingerprinting facilitates rapid discrimination of phylotypes I, II and III of Propionibacterium acnes. Anaerobe, 2013, 20, 20–26.

  • Barbuddhe, S. B., Maier, T., Schwarz, G., et al.: Rapid identification and typing of Listeria species by matrix-assisted laser desorption ionization time of flight mass spectrometry. Appl. Environ. Microbiol., 2008, 74(17), 5402–5407.

  • Reil, M., Erhard, M. Kuijper, E. J., et al.: Recognition of Clostridium difficile PCR-ribotypes 001, 027, and 126/078 using an extended MALDI-TOF MS system. Eur. J. Clin. Microbiol. Infect. Dis., 2011, 30(11), 1431–1436.

  • Wolters, M., Rohde, H., Maier, T., et al.: MALDI-TOF MS fingerprinting allows for discrimination of major methicillin-resistant Staphylococcus aureus lineages. Int. J. Med. Microbiol., 2011, 301(1), 64–68.

  • Shitikov, E., Ilina, E., Chernousova, L., et al.: Mass spectrometry based mathods for the discrimination and typing of mycobacteria. Infect. Genet. Evol., 2012, 12(4), 838–845.

  • Wimmer, J. L., Long, S. W., Cernoch, P., et al.: Strategy for rapid identification and antibiotic susceptibility testing of Gram-negative bacteria directly recovered from positive blood cultures using the Bruker MALDI Biotyper and the BD Phoenix system. J. Clin. Microbiol., 2012, 50(7), 2452–2454.

  • Ferroni, A., Suarez, S., Beretti, J. L., et al.: Real-time identification of bacteria and Candida species in positive blood culture broths by matrix-assisted laser desorption ionization–time of flight mass spectrometry. J. Clin. Microbiol., 2010, 48(5), 1542–1548.

  • Hrabák, J., Studentová, V., Walková, R., et al.: Detection of NDM-1, VIM-1, KPC, OXA-48, and OXA-162 carbapenemases by matrix-assisted laser desorption ionization–time of flight mass spectrometry. J. Clin. Microbiol., 2012, 50(7), 2441–2443.

  • Sparbier, K., Lange, C., Jung, J., et al.: MALDI Biotyper-based rapid resistance detection by stable-isotope labeling. J. Clin. Microbiol., 2013, 51(11), 3741–3748.

  • Demirev, P. A., Hagan, N, S., Antoine, M. D., et al.: Establishing drug resistance in microorganisms by mass spectrometry. J. Am. Soc. Mass Spectrom., 2013, 24(8), 1194–1201.

  • Johansson, A., Nagy, E., Sóki, J.: Detection of carbapenemase activities of Bacteroides fragilis strains with matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS). Anaerobe, 2014, 26, 49–52.

  • Zhang, R., Long, Y., He, W., et al.: Application status of MALDI-TOF mass spectrometry in the identification and drug resistance of mycobacterium tuberculosis. J. Thorac. Dis., 2014, 6(5), 512–516.

  • Vella, A., De Carolis, E., Vaccaro, L., et al.: Rapid antifungal susceptibility testing by matrix-assisted laser desorption ionization–time of flight mass spectrometry analysis. J. Clin. Microbiol., 2013, 51(9), 2964–2969.

  • Ferreira, L., Sánchez-Juanes, F., Muñoz-Bellido, J. L., et al.: Rapid method for direct identification of bacteria in urine and blood culture samples by matrix-assisted laser desorption ionization time-of-flight mass spectrometry: intact cell vs. extraction method. Clin. Microbiol. Infect., 2011, 17(7), 1007–1012.

  • Sparbier, K., Weller, U., Boogen, C., et al.: Rapid detection of Salmonella sp. by means of a combination of selective enrichment broth and MALDI-TOF MS. Eur. J. Clin. Microbiol. Infect. Dis., 2012, 31(5), 767–773.

 

The author instructions are available in PDF.
Instructions for Authors in Hungarian HERE.

 

Mendeley citation style is available HERE.

Senior editors

Editor(s)-in-Chief: Papp Zoltán

Read the professional career of Papp Zoltán HERE.

 

Editorial Board

Click for the Editorial Board

Akadémiai Kiadó
Address: Prielle Kornélia u. 21-35. H-1117 Budapest, Hungary
Phone: (+36 1) 464 8235 ---- Fax: (+36 1) 464 8221
Email: orvosihetilap@akkrt.hu

2019  
Total Cites
WoS
1 085
Impact Factor 0,497
Impact Factor
without
Journal Self Cites
0,212
5 Year
Impact Factor
0,396
Immediacy
Index
0,126
Citable
Items
247
Total
Articles
176
Total
Reviews
71
Cited
Half-Life
6,1
Citing
Half-Life
7,3
Eigenfactor
Score
0,00071
Article Influence
Score
0,045
% Articles
in
Citable Items
71,26
Normalized
Eigenfactor
0,08759
Average
IF
Percentile
10,606
Scimago
H-index
20
Scimago
Journal Rank
0,176
Scopus
Scite Score
864/1178=0,4
Scopus
Scite Score Rank
General Medicine 267/529 (Q3)
Scopus
SNIP
0,254
Acceptance
Rate
73%

 

Language: Hungarian

Founded in 1857
Publication: Weekly, one volume of 52 issues annually