Az ALR fehérje egy igazi misztikum. A fehérje egy hosszabb, 22 kDa-os és egy rövidebb, 15 kDa-os formában létezik. A hetvenes években részleges hepatectomián átesett állatokban fedezték fel és kizárólag a májregeneráció egyik kulcsfehérjéjének tartották. A 2000-es évek elején kiderült, hogy a „hosszú” forma a mitokondriális intermembrán terében lokalizálódik és kisméretű fehérjék mitokondriális importjának és oxidatív foldingjának kapcsolt folyamatában vesz részt. A rendszer szubsztrátjai között több, alapvető mitokondriális folyamatokban nélkülözhetetlen fehérje megtalálható, ezért az ALR génjében bekövetkező mutációk mitokondriális rendellenességekhez vezethetnek. Az ALR „rövid” formája az emlősök szervezetében szekretált extracelluláris növekedési faktorként funkcionál, és változatos módokon képes elősegíteni a hepatocyták védelmét, regenerációját és proliferációját. A közelmúltban előállított kondicionális ALR-mutáns egereken nyert eredmények arra utalnak, hogy fontos szerepet kaphat az alkoholos és nem alkoholos steatosis kialakulásában is. Tekintve, hogy számos, májat érintő elváltozás során megváltozik szérumszintje, ígéretes markermolekula-jelölt a laboratóriumi diagnosztikában. Orv. Hetil., 2015, 156(13), 503–509.
Higgins, G. M., Anderson, R. M.: Experimental pathology of the liver. I. Restoration of the liver of the white rat following partial surgical removal. Arch. Pathol., 1931, 12, 186–202.
Michalopoulos, G. K.: Liver regeneration after partial hepatectomy: critical analysis of mechanistic dilemmas. Am. J. Pathol., 2010, 176(1), 2–13.
LaBrecque, D. R., Pesch, L. A.: Preparation and partial characterization of hepatic regenerative stimulator substance (SS) from rat liver. J. Physiol., 1975, 248(2), 273–284.
LaBrecque, D. R.: Hepatic stimulator substance. Discovery, characteristics and mechanism of action. Dig. Dis. Sci., 1991, 36(5), 669–673.
Starzl, T. E., Jones, A. F., Terblanche, J., et al.: Growth-stimulating factor in regenerating canine liver. Lancet, 1979, 1(8108), 127–130.
Van Hoorn-Hickman, R., Kahn, D., Green, J., et al.: Is there a regeneration stimulator substance in the effluent from perfused partially hepatectomized livers? Hepatology, 1981, 1(4), 287–293.
Fleig, W. E., Lehmann, H., Wagner, H., et al.: Hepatic regenerative stimulator substance in the rabbit. Relation to liver regeneration after partial hepatectomy. J. Hepatol., 1986, 3(1), 19–26.
Francavilla, A., Ove, P., Polimeno, L., et al.: Extraction and partial purification of hepatic stimulatory substance in rats, mice and dogs. Cancer Res., 1987, 47(21), 5600–5605.
Francavilla, A., Barone, M., Van Thiel, D. H., et al.: Further steps of hepatic stimulatory substance purification. Dig. Dis. Sci., 1991, 36(5), 674–680.
Hagiya, M., Francavilla, A., Polimeno, L., et al.: Cloning and sequence analysis of the rat augmenter of liver regeneration (ALR) gene: expression of biologically active recombinant ALR and demonstration of tissue distribution. Proc. Natl. Acad. Sci. U. S. A., 1994, 91(17), 8142–8146. Erratum in Proc. Natl. Acad. Sci. U. S. A., 1995, 92(7), 3076.
Giorda, R., Hagiya, M., Seki, T., et al.: Analysis of the structure and expression of the augmenter of liver regeneration (ALR) gene. Mol. Med., 1996, 2(1), 97–108.
Lee, J., Hofhaus, G., Lisowsky, T.: Erv1p from Saccharomyces cerevisiae is a FAD-linked sulfhydryl oxidase. FEBS Lett., 2000, 477(1–2), 62–66.
Francavilla, A., Hagiya, M., Porter, K. A., et al.: Augmenter of liver regeneration: its place in the universe of hepatic growth factors. Hepatology, 1994, 20(3), 747–757.
Lisowsky, T.: Dual function of a new nuclear gene for oxidative phosphorylation and vegetative growth in yeast. Mol. Gen. Genet., 1992, 232(1), 58–64.
Lisowsky, T., Weinstat-Saslow, D. L., Barton, N., et al.: A new human gene located in the PKD1 region of chromosome 16 is a functional homologue to ERV1 of yeast. Genomics, 1995, 29(3), 690–697.
Senkevich, T. G., White, C. L., Koonin, E. V., et al.: A viral member of the ERV1⁄ALR protein family participates in a cytoplasmic pathway of disulfide bond formation. Proc. Natl. Acad. Sci. U. S. A., 2000, 97(22), 12068–12073.
Becher, D., Kricke, J., Stein, G., et al.: A mutant for the yeast scERV1 gene displays a new defect in mitochondrial morphology and distribution. Yeast, 1999, 15(12), 1171–1181.
Hofhaus, G., Stein, G., Polimeno, L., et al.: Highly divergent amino termini of the homologous human ALR and yeast scERV gene products define species specific differences in cellular localization. Eur. J. Cell Biol., 1999, 78(5), 349–356.
Chen, X., Li, Y., Wei, K., et al.: The potentiation role of hepatopoietin on activator protein-1 is dependent on its sulfhydryl oxidase activity. J. Biol. Chem., 2003, 278(49), 49022–49030.
Gandhi, C. R., Murase, N., Starzl, T. E.: Cholera toxin-sensitive GTP-binding protein-coupled activation of augmenter of liver regeneration (ALR) receptor and its function in rat Kupffer cells. J. Cell. Physiol., 2010, 222(2), 365–373.
Mesecke, N., Terziyska, N., Kozany, C., et al.: A disulfide relay system in the intermembrane space of mitochondria that mediates protein import. Cell, 2005, 121(7), 1059–1069.
Szarka, A., Bánhegyi, G.: Oxidative folding: recent developments. BioMol Concepts, 2011, 2(5), 379–390.
Stein, G., Lisowsky, T.: Functional comparison of the yeast scERV1 and scERV2 genes. Yeast, 1998, 14(2), 171–180.
Gandhi, C. R., Kuddus, R., Subbotin, V. M., et al.: A fresh look at augmenter of liver regeneration in rats. Hepatology, 1999, 29(5), 1435–1445.
Polimeno, L., Pesetti, B., Giorgio, F., et al.: Expression and localization of augmenter of liver regeneration in human muscle tissue. Int. J. Exp. Path., 2009, 90(4), 423–430.
Gandhi, C. R.: Augmenter of liver regeneration. Fibrogenesis Tissue Repair, 2012, 5, 10.
Coppock, D. L., Thorpe, C.: Multidomain flavin-dependent sulfhydryl oxidases. Antioxid. Redox Signal., 2006, 8(3–4), 300–311.
Allen, S., Balabanidou, V., Sideris, D. P., et al.: Erv1 mediates the Mia40-dependent protein import pathway and provides a functional link to the respiratory chain by shuttling electrons to cytochrome c. J. Mol. Biol., 2005, 353(5), 937–944.
Farrell, S. R., Thorpe, C.: Augmenter of liver regeneration: a flavin-dependent sulfhydryl oxidase with cytochrome c reductase activity. Biochemistry, 2005, 44(5), 1532–1541.
Di Fonzo, A., Ronchi, D., Lodi, T., et al.: The mitochondrial disulfide relay system protein GFER is mutated in autosomal-recessive myopathy with cataract and combined respiratory-chain deficiency. Am. J. Hum. Genet., 2009, 84(5), 594–604.
Lange, H., Lisowsky, T., Gerber, J., et al.: An essential function of the mitochondrial sulfhydryl oxidase Erv1p/ALR in the maturation of cytosolic Fe/S proteins. EMBO Rep., 2001, 2(8), 715–720.
Sideris, D. P., Tokatlidis, K.: Oxidative protein folding in the mitochondrial intermembrane space. Antioxid. Redox Signal., 2010, 13(8), 1189–1204.
DiMauro, S., Schon, E. A.: Mitochondrial disorders in the nervous system. Annu. Rev. Neurosci., 2008, 31, 91–123.
Wang, G., Yang, X., Zhang, Y., et al.: Identification and characterization of receptor for mammalian hepatopoietin that is homologous to yeast ERV1. J. Biol. Chem., 1999, 274(17), 11469–11472.
Li, Y., Li, M., Xing, G., et al.: Stimulation of the mitogen-activated protein kinase cascade and tyrosine phosphorylation of the epidermal growth factor receptor by hepatopoietin. J. Biol. Chem., 2000, 275(48), 37443–37447.
Ilowski, M., Putz, C., Weiss, T. S., et al.: Augmenter of liver regeneration causes different kinetics of ERK1/2 and Akt/PKB phosphorylation than EGF and induces hepatocyte proliferation in an EGF receptor independent and liver specific manner. Biochem. Biophys. Res. Commun., 2010, 394(4), 915–920.
Dayoub, R., Thasler, W. E., Bosserhoff, A. K., et al.: Regulation of polyamine synthesis in human hepatocytes by hepatotrophic factor augmenter of liver regeneration. Biochem. Biophys. Res. Commun., 2006, 345(1), 181–187.
Thasler, W. E., Dayoub, R., Mühlbauer, M., et al.: Repression of cytochrome P450 activity in human hepatocytes in vitro by a novel hepatotrophic factor, augmenter of liver regeneration. J. Pharmacol. Exp. Ther., 2006, 316(2), 822–829.
Higaki, I., Matsui-Yuasa, I., Hirohashi, K., et al.: The role of polyamines in growth factor induced DNA synthesis in cultured rat hepatocytes. Hepatogastroenterology, 1999, 46(27), 1874–1879.
Luk, G. D.: Essential role of polyamine metabolism in hepatic regeneration. Inhibition of deoxyribonucleic acid and protein synthesis and tissue regeneration by difluoromethylornithine in the rat. Gastroenterology, 1986, 90(5 Pt 1), 1261–1267.
Lu, J., Xu, W. X., Zhan, Y. Q., et al.: Identification and characterization of a novel isoform of hepatopoietin. World J. Gastroenterol., 2002, 8(2), 353–356.
Teng, E. C., Todd, L. R., Ribar, T. J., et al.: Gfer inhibits Jab1-mediated degradation of p27kip1 to restrict proliferation of hematopoietic stem cells. Mol. Biol. Cell, 2011, 22(8), 1312–1320.
Fischer, M., Riemer, J.: The mitochondrial disulfide relay system: roles in oxidative protein folding and beyond. Int. J. Cell Biol., 2013, 2013, 742923.
Tanigawa, K., Sakaida, I., Masuhara, M., et al.: Augmenter of liver regeneration (ALR) may promote liver regeneration by reducing natural killer (NK) cell activity in human liver diseases. J. Gastroenterol., 2000, 35(2), 112–119.
Vujanovic, N. L., Polimeno, L., Azzarone, A., et al.: Changes of liver-resident NK cells during liver regeneration in rats. J. Immunol., 1995, 154(12), 6324–6338.
Michalopoulos, G. K.: Liver regeneration. J. Cell. Physiol., 2007, 213(2), 286–300.
Gandhi, C. R., Chaillet, J. R., Nalesnik, M. A., et al.: Liver-specific deletion of augmenter of liver regeneration accelerates development of steatohepatitis and hepatocellular carcinoma in mice. Gastroenterology, 2015, 148(2), 379–391.e4.
Thirunavukkarasu, C., Wang, L. F., Harvey, S. A., et al.: Augmenter of liver regeneration: an important intracellular survival factor for hepatocytes. J. Hepatology, 2008, 48(4), 578–588.
Fromenty, B., Pessayre, D.: Inhibition of mitochondrial beta-oxidation as a mechanism of hepatotoxicity. Pharmacol. Ther., 1995, 67(1), 101–154.
Brunt, E. M.: Nonalcoholic steatohepatitis. Semin. Liver Dis., 2004, 24(1), 3–20.
Thasler, W. E., Schlott, T., Thelen, P., et al.: Expression of augmenter of liver regeneration (ALR) in human liver cirrhosis and carcinoma. Histopathology, 2005, 47(1), 57–66.
Gandhi, C. R., Murase, N., Subbotin, V. M., et al.: Portacaval shunt causes apoptosis and liver atrophy rats despite increases in endogenous levels of major hepatic growth factors. J. Hepatol., 2002, 37(3), 340–348.
Vodovotz, Y., Prelich, J., Lagoa, C., et al.: Augmenter of liver regeneration (ALR) is a novel biomarker of hepatocellular stress/inflammation: in vitro, in vivo, and in silico studies. Mol. Med., 2013, 18, 1421–1429.
Song, M., Yi, X., Chen, W., et al.: Augmenter of liver regeneration (ALR) gene therapy attenuates CCl4-induced liver injury and fibrosis in rats. Biochem. Bophys. Res. Commun., 2011, 415(1), 152–156.