A sarcoma synoviale a lágyrész-sarcomák 5–10%-ában, az összes malignus daganatok 0,05–0,1%-ában fordul elő. Főként a végtagokon keletkezik, azonban bárhol kialakulhat. A betegek 50%-ában 3–5 éven belül metasztázisok jelennek meg (tüdő, nyirokcsomó, csont), sőt akár 20 év elteltével is számítani lehet a sarcoma synoviale kiújulására. Az 5 éves teljes túlélés lokalizált betegség esetén 76%, metasztatikus esetben 10%. Az életkor, daganatméret, szövettani altípus és a radioterápia megtörténte befolyásolja a prognózist. Az adjuváns kemoterápia szerepe nem bizonyított. Számos klinikai vizsgálat van folyamatban a lokálisan előrehaladott, relaptálódott/refrakter és metasztatikus sarcoma synoviale kezelésére. A sarcoma synoviale biológiai viselkedésének jobb megértésével a célzott kezelés és a konvencionális terápia kombinációja válhat a jövő útjává. Orv. Hetil., 2015, 156(22), 875–880.
Pack, G. T., Ariel, I. M.: Synovial sarcoma (malignant synovioma); a report of 60 cases. Surgery, 1950, 28(6), 1047–1084.
Singer, S., Demetri, G. D., Baldini, E. H., et al.: Management of soft-tissue sarcomas: an overview and update. Lancet Oncol., 2000, 1, 75–85.
Weiss, S. W., Goldblum, J. R., Folpe, A. R.: Einzinger and Weiss’s Soft Tissue Tumors. 4th edition. Mosby, Inc., Chicago, 2001.
Trassard, M., Le Doussal, V., Hacène, K., et al.: Prognostic factors in localized primary synovial sarcoma: a multicenter study of 128 adult patients. J. Clin. Oncol., 2001, 19(2), 525–534.
McCarville, M. B., Spunt, S. L., Skapek, S. X., et al.: Synovial sarcoma in pediatric patients. AJR, Am. J. Roentgenol., 2002, 179(3), 797–801.
Guillou, L., Benhattar, J., Bonichon, F., et al.: Histologic grade, but not SYT-SSX fusion type, is an important prognostic factor in patients with synovial sarcoma: a multicenter, retrospective analysis. J. Clin. Oncol., 2004, 22(20), 4040–4050.
Spurell, E. L., Fisher, C., Thomas, J. M., et al.: Prognostic factors in advanced synovial sarcoma: an analysis of 104 patients treated at the Royal Marsden Hospital. Ann. Oncol., 2005, 16(3), 437–444.
Palmerini, E., Staals, E. L., Alberghini, M., et al.: Synovial sarcoma: retrospective analysis of 250 patients treated at a single institution. Cancer, 2009, 115(13), 2988–2998.
Italiano, A., Penel, N., Robin, Y. M., et al.: Neo/adjuvant chemotherapy does not improve outcome in resected primary synovial sarcoma: a study of the French Sarcoma Group. Ann. Oncol., 2009, 20(3), 425–430.
Krieg, A. H., Hefti, F., Speth, B. M., et al.: Synovial sarcomas usually metastasize after >5 years: a multicenter retrospective analysis with minimum follow-up of 10 years for survivors. Ann. Oncol., 2011, 22(2), 458–467. [Epub 2010 Aug 17]
Speth, B. M., Krieg, A. H., Kaelin, A., et al.: Synovial sarcoma in patients under 20 years of age: a multicenter study with a minimum follow-up of 10 years. J. Child. Orthop., 2011, 5(5), 335–342.
Wushou, A., Miao, X. C.: Tumor size predicts prognosis of head and neck synovial cell sarcoma. Oncol. Lett., 2015, 9(1), 381–386.
Balogh, Z., Szemlaky, Z., Szendroi, M., et al.: Correlation between DNA ploidy, metaphase high-resolution comparative genomic hybridization results and clinical outcome of synovial sarcoma. Diagn. Pathol., 2011, 6, 107.
Ladanyi, M., Antonescu, C. R., Leung, D. H., et al.: Impact of SYT-SSX fusion type on the clinical behavior of synovial sarcoma: a multi-institutional retrospective study of 243 patients. Cancer Res., 2002, 62(1), 135–140.
Papanastassiou, I., Ioannou, M., Papagelopoulos, P. J., et al.: P53 expression as a prognostic marker in giant cell tumor of bone: a pilot study. Orthopedics, 2010, 33(5).
Teng, H. W., Wang, H. W., Chen, W. M., et al.: Prevalence and prognostic influence of genomic changes of EGFR pathway markers in synovial sarcoma. J. Surg. Oncol., 2011, 103(8), 773–781.
Chakiba, C., Lagarde, P., Pissaloux, D., et al.: Response to chemotherapy is not related to chromosome instability in synovial sarcoma. Ann. Oncol., 2014, 25(11), 2267–2271.
Suehara, Y., Tochigi, N., Kubota, D., et al.: Secernin-1 as a novel prognostic biomarker candidate of synovial sarcoma revealed by proteomics. J. Proteomics, 2011, 74(6), 829–842.
Song, S., Park, J., Kim, H. J., et al.: Effects of adjuvant radiotherapy in patients with synovial sarcoma. Am. J. Clin. Oncol., 2014 Oct 27. [Epub ahead of print]
Naing, K. W., Monjazeb, A. M., Li, C. S., et al.: Perioperative radiotherapy is associated with improved survival among patients with synovial sarcoma: A SEER analysis. J. Surg. Oncol., 2015, 111(2), 158–164.
Ferrari, A., De Salvo, G. L., Brennan, B., et al.: Synovial sarcoma in children and adolescents: the European Pediatric Soft Tissue Sarcoma Study Group prospective trial (EpSSG NRSTS 2005). Ann Oncol., 2015, 26(3), 567–572.
Hu, X., Cai, H., Zhou, M., et al.: New clinical application of high-intensity focused ultrasound: local control of synovial sarcoma. World J. Surg. Oncol., 2013, 11, 265.
Schwindenhammer, B., Podleska, L. E., Kutritz, A., et al.: The pathologic response of resected synovial sarcomas to hyperthermic isolated limb perfusion with melphalan and TNF-α: a comparison with the whole group of resected soft tissue sarcomas. World J. Surg. Oncol., 2013, 11(1), 185.
Balieiro, M. A., Lopes, A. J., Costa, B. P., et al.: The surprising outcome of a giant primary mediastinal synovial sarcoma treated with neoadjuvant chemotherapy. J. Thorac. Dis., 2013, 5(1), 94–96.
Stanelle, E. J., Christison-Lagay, E. R., Wolden, S. L., et al.: Pulmonary metastasectomy in pediatric/adolescent patients with synovial sarcoma: an institutional review. J. Pediatr. Surg., 2013, 48(4), 757–763.
Gerber, N. K., Meyers, P. A., LaQuaglia, M. P., et al.: Whole-lung irradiation in the treatment of metastatic synovial sarcoma. Pediatr. Blood Cancer, 2014, 61(11), 2092–2093.
Yetisyigit, T., Arpaci, E., Seber, E. S., et al.: Salvage treatment experience in advanced synovial sarcoma: a multicenter retrospective analysis of the Anatolian Society of Medical Oncology. Asian Pac. J. Cancer Prev., 2013, 14(9), 5185–5188.
Minchom, A., Jones, R. L., Fisher, C., et al.: Clinical benefit of second-line palliative chemotherapy in advanced soft-tissue sarcoma. Sarcoma, 2010, 2010, Article ID 264360.
Abe, K., Maebayashi, T., Shizukuishi, T., et al.: Radiological assessment following thermoradiation therapy for primary pleural synovial sarcoma: case report. Med. Oncol., 2010, 27(3), 1027–1030.
Zanardi, E., Maruzzo, M., Montesco, M. C., et al.: Response to trabectedin in a patient with advanced synovial sarcoma with lung metastases. Anticancer Drugs, 2014, 25(10), 1227–1230.
Jones, K. B., Haldar, M., Schiffman, J. D., et al.: Of mice and men: opportunities to use genetically engineered mouse models of synovial sarcoma for preclinical cancer therapeutic evaluation. Cancer Control, 2011, 18(3), 196–203.
Liu, L., Cao, Y., Chen, C., et al.: Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res., 2006, 66(24), 11851–11858.
Maki, R. G., D’Adamo, D. R., Keohan, M. L., et al.: Phase II study of sorafenib in patients with metastatic or recurrent sarcomas. J. Clin. Oncol., 2009, 27(19), 3133–3140.
Kasper, B., Sleijfer, S., Litière, S., et al.: Long-term responders and survivors on pazopanib for advanced soft tissue sarcomas: subanalysis of two European Organisation for Research and Treatment of Cancer (EORTC) clinical trials 62043 and 62072. Ann. Oncol., 2014, 25(3), 719–724.
Asmane, I., Watkin, E., Alberti, L., et al.: Insulin-like growth factor type 1 receptor (IGF-1R) exclusive nuclear staining: a predictive biomarker for IGF-1R monoclonal antibody (Ab) therapy in sarcomas. Eur. J. Cancer, 2012, 48(16), 3027–3035.
Weigel, B., Malempati, S., Reid, J. M., et al.: Phase 2 trial of cixutumumab in children, adolescents, and young adults with refractory solid tumors: a report from the Children’s Oncology Group. Pediatr. Blood Cancer, 2014, 61(3), 452–456.
Pappo, A. S., Patel, S. R., Crowley, J., et al.: R1507, a monoclonal antibody to the insulin-like growth factor 1 receptor, in patients with recurrent or refractory Ewing sarcoma family of tumors: results of a phase II Sarcoma Alliance for Research through Collaboration study. Clin. Oncol., 2011, 29(34), 4541–4547.
Ito, T., Ouchida, M., Morimoto, Y., et al.: Significant growth suppression of synovial sarcomas by the histone deacetylase inhibitor FK228 in vitro and in vivo. Cancer Lett., 2005, 224(2), 311–319.
Cassier, P. A., Lefranc, A., Amela, E. Y., et al.: A phase II trial of panobinostat in patients with advanced pretreated soft tissue sarcoma. A study from the French Sarcoma Group. Br. J. Cancer, 2013, 109(4), 909–914.
Chugh, R., Wathen, J. K., Maki, R. G., et al.: Phase II multicenter trial of imatinib in 10 histologic subtypes of sarcoma using a bayesian hierarchical statistical model. J. Clin. Oncol., 2009, 27(19), 3148–3153.
Heinrich, M. C., Joensuu, H., Demetri, G. D., et al.: Phase II, open-label study evaluating the activity of imatinib in treating life-threatening malignancies known to be associated with imatinib-sensitive tyrosine kinases. Clin. Cancer Res., 2008, 14(9), 2717–2725.
Thornton, K. A., Chen, A. R., Trucco, M. M., et al.: A dose-finding study of temsirolimus and liposomal doxorubicin for patients with recurrent and refractory bone and soft tissue sarcoma. Int. J. Cancer, 2013, 133(4), 997–1005.
Numoto, K., Yoshida, A., Sugihara, S., et al.: Frequent methylation of RASSF1A in synovial sarcoma and the anti-tumor effects of 5-aza-2’-deoxycytidine against synovial sarcoma cell lines. J. Cancer Res. Clin. Oncol., 2010, 136(1), 17–25.
Schildhaus, H. U., Riegel, R., Hartmann, W., et al.: Lysine-specific demethylase 1 is highly expressed in solitary fibrous tumors, synovial sarcomas, rhabdomyosarcomas, desmoplastic small round cell tumors, and malignant peripheral nerve sheath tumors. Hum. Pathol., 2011, 42(11), 1667–1675.
Sakai, T., Eskander, R. N., Guo, Y., et al.: Flavokawain B, a kava chalcone, induces apoptosis in synovial sarcoma cell lines. Orthop. Res., 2012, 30(7), 1045–1050.
Sun, Y., Wang, H., Lin, F., et al.: Inhibition of proliferation and gene expression regulation by (-)-epigallocatechin-3-gallate in human synovial sarcoma cells. Med. Oncol., 2011, 28(4), 1463–1468.
Takenaka, S., Naka, N., Araki, N., et al.: Downregulation of SS18-SSX1 expression in synovial sarcoma by small interfering RNA enhances the focal adhesion pathway and inhibits anchorage-independent growth in vitro and tumor growth in vivo. Int. J. Oncol., 2010, 36(4), 823–831.
Wakamatsu, T., Naka, N., Sasagawa, S., et al.: Deflection of vascular endothelial growth factor action by SS18-SSX and composite vascular endothelial growth factor- and chemokine (C-X-C motif) receptor 4-targeted therapy in synovial sarcoma. Cancer Sci., 2014, 105(9), 1124–1134.
Nielsen, T. O., Poulin, N. M., Ladanyi, M.: Synovial sarcoma: recent discoveries as a roadmap to new avenues for therapy. Cancer Discov., 2015, 5(2), 124–134.