View More View Less
  • 1 Semmelweis Egyetem, Általános Orvostudományi Kar, Budapest, Üllői út 78., 1082
Open access

Absztrakt

Az ischaemiás-reperfúziós károsodás kiemelkedő jelentősége számos szerv és klinikai szituáció esetén jól bizonyított. A posztoperatív komplikációk prevalenciáját, a célszerv sérülését és a szisztémás szövődmények előfordulását jelentősen meghatározó károsodás mediálásában központi szerep jut a szabad gyököknek. A szabadgyök-stresszre kimondottan érzékeny máj anatómiailag és patofiziológiailag speciális ischaemiás-reperfúziós károsodása májsebészeti szempontból kulcsfontosságú. A reperfúziós károsodás mérséklésére számos kondicionáló eljárás (adaptív technikák, kémiai vegyületek) ismert. Jelen összefoglaló célja az ischaemiás-reperfúziós károsodás mérséklésére irányuló technikák áttekintése a szerző kutatócsoportjának eddigi munkássága (ischaemiás prekondicionálás, -perkondicionálás, glutaminszupplementáció, adenozin-, inozin-, levosimendan-, poli-ADP-ribóz polimerázgátlás szerepe) alapján, különös tekintettel a máj ischaemiás-reperfúziós károsodására, valamint a szabad gyökök abban betöltött patofiziológiai szerepére. Orv. Hetil., 2015, 156(47), 1904–1907.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Bulkley, G. B., Kvietys, P. R.; Parks, D. A., et al.: Relationship of blood flow and oxygen consumption to ischemic injury in the canine small intestine. Gastroenterology, 1985, 89(4), 852–857.

  • 2

    Anaya-Prado, R., Toledo-Pereyra, L. H.: The molecular events underlying ischemia/reperfusion injury. Transplant. Proc., 2002, 34(7), 2518–2519.

  • 3

    Blaisdell, F. W.: The pathophysiology of skeletal muscle ischemia and the reperfusion syndrome: a review. Cardiovasc. Surg., 2002, 10(6), 620–630.

  • 4

    Biffl, W. L., Moore, E. E.: Splanchnic ischaemia/reperfusion and multiple organ failure. Br. J. Anaesth., 1996, 77(1), 59–70.

  • 5

    Parks, D. A., Williams, T. K., Beckman, J. S.: Conversion of xanthine dehydrogenase to oxidase in ischemic rat intestine: a reevaluation. Am. J. Physiol., 1988, 254(5), G768–G774.

  • 6

    Halliwell, B., Gutteridge, J. M. (eds.): Free radicals in biology and medicine. 3rd ed. Oxford University Press, Oxford, 1999.

  • 7

    Ogawa, K., Kondo T., Tamura, T., et al.: Influence of Kupffer cells and platelets on ischemia-reperfusion injury in mild steatotic liver. World J. Gastroenterol., 2013, 19(9), 1396–1404.

  • 8

    Abu-Amara, M., Yang, S. Y., Seifalian, A., et al.: The nitric oxide pathway – evidence and mechanisms for protection against liver ischaemia reperfusion injury. Liver Int., 2012, 32(4), 531–543.

  • 9

    Halliwell, B., Gutteridge, J. M. (eds.): Free radicals in biology and medicine. 2nd ed. Clarendon Press, Oxford, 1989.

  • 10

    Ferrari, R., Ceconi, C., Curello, S., et al.: Role of oxygen free radicals in ischemic and reperfused myocardium. Am. J. Clin. Nutr., 1991, 53(1 Suppl.), 215S–222S.

  • 11

    Rappaport, A. M.: Hepatic blood flow: morphologic aspects and physiologic regulation. Int. Rev. Physiol., 1980, 21, 1–63.

  • 12

    Szijártó, A.: Increased ischemic tolerance in liver surgery. [Az ischaema-tolerancia növelésének lehetőségei a májsebészetben.] Magy. Seb., 2008, 61(3), 128–135. [Hungarian]

  • 13

    Menger, M. D., Richter, S., Yamauchi, J., et al.: Role of microcirculation in hepatic ischemia/reperfusion injury. Hepatogastroenterology, 1999, 46(Suppl. 2), 1452–1457.

  • 14

    Jaeschke, H., Farhood, A.: Neutrophil and Kupffer cell-induced oxidant stress and ischemia-reperfusion injury in rat liver. Am. J. Physiol., 1991, 260(3), G355–G362.

  • 15

    Blázovics, A., Kovács, A., Lugasi, A., et al.: Antioxidant defense in erythrocytes and plasma of patients with active and quiescent Crohn disease and ulcerative colitis: a chemiluminescent study. Clin. Chem., 1999, 45(6), 895–896.

  • 16

    Blois, M. S.: Antioxidant determination by the use of stable free radicals. Nature, 1958, 181(4617), 1999–2000.

  • 17

    Oyaizu, M.: Studies on products of browning reaction – antioxidative activities of products of browning reaction prepared from glucosamine. Eiyogaku zasshi = Japanese journal of nutrition, 1986.

  • 18

    Sedlak, J., Lindsay, R. H.: Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem., 1968, 25(1), 192–205.

  • 19

    Taccone-Gallucci, M., Lubrano, R., Meloni, C., et al.: Malonyldialdehyde content of cell membranes is the most important marker of oxidative stress in haemodialysis patients. Nephrol. Dial. Transplant., 1998, 13(10), 2711–2712.

  • 20

    Murry, C. E., Jennings, R. B., Reimer, K. A.: Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation, 1986, 74(5), 1124–1136.

  • 21

    Szijarto, A., Hahn, O., Lotz, G., et al.: Effect of ischemic preconditioning on rat liver microcirculation monitored with laser Doppler flowmetry. J. Surg. Res., 2006, 131(1), 150–157.

  • 22

    Hahn, O., Szijárto, A., Lotz, G., et al.: The effect of ischemic preconditioning prior to intraoperative radiotherapy on ischemic and on reperfused rat liver. J. Surg. Res., 2007, 142(1), 32–44.

  • 23

    Przyklenk, K., Bauer, B., Ovize, M., et al.: Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation, 1993, 87(3), 893–899.

  • 24

    Schmidt, M. R., Smerup, M., Konstantinov, I. E., et al.: Intermittent peripheral tissue ischemia during coronary ischemia reduces myocardial infarction through a KATP-dependent mechanism: first demonstration of remote ischemic perconditioning. Am. J. Physiol. Heart Circ. Physiol., 2007, 292(4), H1883–H1890.

  • 25

    Szijártó, A., Czigány, Z., Turóczi, Z., et al.: Remote ischemic perconditioning – a simple, low-risk method to decrease ischemic reperfusion injury: models, protocols and mechanistic background. A review. J. Surg. Res., 2012, 178(2), 797–806.

  • 26

    Czigány, Z., Turóczi, Z., Ónody, P., et al.: Remote ischemic perconditioning protects the liver from ischemia-reperfusion injury. J. Surg. Res., 2013, 185(2), 605–613.

  • 27

    Czigany, Z., Turóczi, Z., Kleiner, D., et al.: Neural elements behind the hepatoprotection of remote perconditioning. J. Surg. Res., 2015, 193(2), 642–651.

  • 28

    Soeding, P. F., Crack, P. J., Wright, C. E., et al.: Levosimendan preserves the contractile responsiveness of hypoxic human myocardium via mitochondrial KATP channel and potential pERK 1/2 activation. Eur. J. Pharmacol., 2011, 655(1–3), 59–66.

  • 29

    Grossini, E., Molinari, C., Caimmi, P. P., et al.: Levosimendan induces NO production through p38 MAPK, ERK and Akt in porcine coronary endothelial cells: role for mitochondrial KATP channel. Br. J. Pharmacol., 2009, 156(2), 250–261.

  • 30

    Pollesello, P., Papp, Z.: The cardioprotective effects of levosimendan: preclinical and clinical evidence. J. Cardiovasc. Pharmacol., 2007, 50(3), 257–263.

  • 31

    Turóczi, Z., Arányi, P., Lukáts, A., et al.: Muscle fiber viability, a novel method for the fast detection of ischemic muscle injury in rats. PLoS ONE, 2014, 9(1), e84783.

  • 32

    Onody, P., Stangl, R., Fulop, A., et al.: Levosimendan: a cardiovascular drug to prevent liver ischemia-reperfusion injury? PLoS ONE, 2013, 8(9), e73758.

  • 33

    Gomez, G., Sitkovsky, M. V.: Differential requirement for A2a and A3 adenosine receptors for the protective effect of inosine in vivo. Blood, 2003, 102(13), 4472–4478.

  • 34

    Modis, K., Gero, D., Stangl, R., et al.: Adenosine and inosine exert cytoprotective effects in an in vitro model of liver ischemia-reperfusion injury. Int. J. Mol. Med., 2013, 31(2), 437–446.

  • 35

    Lochs, H., Dejong, C., Hammarqvist, F., et al.: ESPEN guidelines on enteral nutrition: Gastroenterology. Clin. Nutr., 2006, 25(2), 260–274.

  • 36

    Stangl, R., Szijarto, A., Onody, P. et al.: Reduction of liver ischemia-reperfusion injury via glutamine pretreatment. J. Surg. Res., 2011, 166(1), 95–103.

  • 37

    Szijarto, A., Hahn, O., Batmunkh, E., et al.: Short-term alanyl-glutamine dipeptide pretreatment in liver ischemia-reperfusion model: effects on microcirculation and antioxidant status in rats. Clin. Nutr., 2007, 26(5), 640–648.

  • 38

    Preiser, J. C., Wernerman, J.: Glutamine, a life-saving nutrient, but why? Crit. Care Med., 2003, 31(10), 2555–2556.

  • 39

    Berger, S. J., Sudar, D. C., Berger, N. A.: Metabolic consequences of DNA damage: DNA damage induces alterations in glucose metabolism by activation of poly (ADP-ribose) polymerase. Biochem. Biophys. Res. Commun., 1986, 134(1), 227–232.

  • 40

    Cuzzocrea, S., Thiemermann, C., Salvemini, D.: Potential therapeutic effect of antioxidant therapy in shock and inflammation. Curr. Med. Chem., 2004, 11(9), 1147–1162.

  • 41

    Khandoga, A., Biberthaler, P., Enders, G., et al.: 5-aminoisoquinolinone, a novel inhibitor of poly(adenosine disphosphate-ribose) polymerase, reduces microvascular liver injury but not mortality rate after hepatic ischemia-reperfusion. Crit. Care Med., 2004, 32(2), 472–477.

  • 42

    Szijártó, A., Batmunkh, E., Hahn, O., et al.: Effect of PJ-34 PARP-inhibitor on rat liver microcirculation and antioxidant status. J. Surg. Res., 142(1), 72–80.

The author instructions are available in PDF.
Instructions for Authors in Hungarian HERE.

Mendeley citation style is available HERE.

 

MANUSCRIPT SUBMISSION

  • Impact Factor (2018): 0.564
  • Medicine (miscellaneous) SJR Quartile Score (2018): Q3
  • Scimago Journal Rank (2018): 0.193
  • SJR Hirsch-Index (2018): 18

Language: Hungarian

Founded in 1857
Publication: Weekly, one volume of 52 issues annually

Senior editors

Editor(s)-in-Chief: Papp Zoltán

Read the professional career of Papp Zoltán HERE.

 

Editorial Board

Click for the Editorial Board

Akadémiai Kiadó
Address: Prielle Kornélia u. 21-35. H-1117 Budapest, Hungary
Phone: (+36 1) 464 8235 ---- Fax: (+36 1) 464 8221
Email: orvosihetilap@akkrt.hu