A 2-es típusú diabetes terjedése összefügg az elhízás gyakoriságának és mértékének növekedésével. A tápanyagfelesleg raktározása megviseli a zsírsejteket, ami lokális gyulladás révén felgyorsítja a triglicerid-anyagcsere körforgását és megemeli a szabad zsírsavak plazmaszintjét. A tartós zsírsavtúltengés károsítja a sejtek működését (lipotoxicitás), sőt akár programozott sejthalált is okozhat. Az aktiválódó stresszkinázok akadályozzák az inzulin-jelátvitelt, és gyakran elősegítik az apoptózist. A zsírsavtúltengés tehát az inzulinrezisztencia és a β-sejt-károsodás révén összekapcsolja az elhízást a cukorbetegséggel. A lipotoxicitással kapcsolatos kutatások – és ezen belül a telített, telítetlen, illetve transzzsírsavak hatásainak összehasonlítása – magyarázattal szolgálnak számos korábban is ismert jelenségre. Az e téren bővülő ismeretek pedig a metabolikus szindróma és a diabetes megelőzésének, illetve gyógyításának új stratégiáit kínálják. Orv. Hetil., 2016, 157(19), 733–739.
Hu, F. B.: Globalization of diabetes: the role of diet, lifestyle, and genes. Diabetes Care, 2011, 34(6), 1249–1257.
Ye, J.: Mechanisms of insulin resistance in obesity. Front. Med., 2013, 7(1), 14–24.
Li, H., Yu, X.: Emerging role of JNK in insulin resistance. Curr. Diabetes Rev., 2013, 9(5), 422–428.
Fain, J. N.: Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells. Vitam. Horm., 2006, 74, 443–477.
Yuzefovych, L., Wilson, G., Rachek, L.: Different effects of oleate vs. palmitate on mitochondrial function, apoptosis, and insulin signaling in L6 skeletal muscle cells: role of oxidative stress. Am. J. Physiol. Endocrinol. Metab., 2010, 299(6), E1096–E1105.
Miller, T. A., LeBrasseur, N. K., Cote, G. M., et al.: Oleate prevents palmitate-induced cytotoxic stress in cardiac myocytes. Biochem. Biophys. Res. Commun., 2005, 336(1), 309–315.
Sieber, J., Lindenmeyer, M. T., Kampe, K., et al.: Regulation of podocyte survival and endoplasmic reticulum stress by fatty acids. Am. J. Physiol. Renal Physiol., 2010, 299(4), F821–F829.
Ganguly, R., Pierce, G. N.: The toxicity of dietary trans fats. Food Chem. Toxicol., 2015, 78, 170–176.
Volpe, C. M., Nogueira-Machado, J. A.: The dual role of free fatty acid signaling in inflammation and therapeutics. Recent Pat. Endocr. Metab. Immune Drug Discov., 2013, 7(3), 189–197.
Schumann, J., Fuhrmann, H.: Impairment of NFκB activity by unsaturated fatty acids. Int. Immunopharmacol., 2010, 10(8), 978–984.
la Cour Poulsen, L., Siersbaek, M., Mandrup, S.: PPARs: fatty acid sensors controlling metabolism. Semin. Cell Dev. Biol., 2012, 23(6), 631–639.
Lambertucci, R. H., Hirabara, S. M., Silveira Ldos, R., et al.: Palmitate increases superoxide production through mitochondrial electron transport chain and NADPH oxidase activity in skeletal muscle cells. J. Cell. Physiol., 2008, 216(3), 796–804.
Koshkin, V., Dai, F. F., Robson-Doucette, C. A., et al.: Limited mitochondrial permeabilization is an early manifestation of palmitate-induced lipotoxicity in pancreatic β-cells. J. Biol. Chem., 2008, 283(12), 7936–7948.
Xu, S., Nam, S. M., Kim, J. H., et al.: Palmitate induces ER calcium depletion and apoptosis in mouse podocytes subsequent to mitochondrial oxidative stress. Cell Death Dis., 2015, 6, e1976.
Febbraio, M., Silverstein, R. L.: CD36: implications in cardiovascular disease. Int. J. Biochem. Cell Biol., 2007, 39(11), 2012–2030.
Kim, J. A., Jang, H. J., Hwang, D. H.: Toll-like receptor 4-induced endoplasmic reticulum stress contributes to impairment of vasodilator action of insulin. Am. J. Physiol. Endocrinol. Metab., 2015, 309(9), E767–E776.
Csala, M., Marcolongo, P., Lizák, B., et al.: Transport and transporters in the endoplasmic reticulum. Biochim. Biophys. Acta, 2007, 1768(6), 1325–1341.
Csala, M., Kereszturi, E., Mandl, J., et al.: The endoplasmic reticulum as the extracellular space inside the cell: role in protein folding and glycosylation. Antioxid. Redox Signal., 2012, 16(10), 1100–1108.
Bánhegyi, G., Csala, M., Mandl, J., et al.: Fatty acyl-CoA esters and the permeability of rat liver microsomal vesicles. Biochem. J., 1996, 320(Pt 1), 343–344.
Mandl, J., Mészáros, T., Bánhegyi, G., et al.: Endoplasmic reticulum: nutrient sensor in physiology and pathology. Trends Endocrinol. Metab., 2009, 20(4), 194–201.
Urano, F., Wang, X., Bertolotti, A., et al.: Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science, 2000, 287(5453), 664–666.
Hu, P., Han, Z., Couvillon, A. D., et al.: Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1α-mediated NF-κB activation and down-regulation of TRAF2 expression. Mol. Cell. Biol., 2006, 26(8), 3071–3084.
Zambó, V., Simon-Szabó, L., Szelényi, P., et al.: Lipotoxicity in the liver. World J. Hepatol., 2013, 5(10), 550–557.
Mantzaris, M. D., Tsianos, E. V., Galaris, D.: Interruption of triacylglycerol synthesis in the endoplasmic reticulum is the initiating event for saturated fatty acid-induced lipotoxicity in liver cells. FEBS J., 2011, 278(3), 519–530.
Peter, A., Weigert, C., Staiger, H., et al.: Individual stearoyl-CoA desaturase 1 expression modulates endoplasmic reticulum stress and inflammation in human myotubes and is associated with skeletal muscle lipid storage and insulin sensitivity in vivo. Diabetes, 2009, 58(8), 1757–1765.
Green, C. D., Olson, L. K.: Modulation of palmitate-induced endoplasmic reticulum stress and apoptosis in pancreatic β-cells by stearoyl-CoA desaturase and Elovl6. Am. J. Physiol. Endocrinol. Metab., 2011, 300(4), E640–E649.
Volmer, R., van der Ploeg, K., Ron, D.: Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. Proc. Natl. Acad. Sci. U.S.A., 2013, 110(12), 4628–4633.
Giovannone, B., Scaldaferri, M. L., Federici, M., et al.: Insulin receptor substrate (IRS) transduction system: distinct and overlapping signaling potential. Diabetes Metab. Res. Rev., 2000, 16(6), 434–441.
Ragheb, R., Shanab, G. M., Medhat, A. M., et al.: Free fatty acid-induced muscle insulin resistance and glucose uptake dysfunction: evidence for PKC activation and oxidative stress-activated signaling pathways. Biochem. Biophys. Res. Commun., 2009, 389(2), 211–216.
Sharma, R. B., Alonso, L. C.: Lipotoxicity in the pancreatic beta cell: not just survival and function, but proliferation as well? Curr. Diab. Rep., 2014, 14(6), 492.
Tuo, Y., Feng, D. D., Wang, D. F., et al.: Long-term in vitro treatment of INS-1 rat pancreatic β-cells by unsaturated free fatty acids protects cells against gluco- and lipotoxicities via activation of GPR40 receptors. Clin. Exp. Pharmacol. Physiol., 2012, 39(5), 423–428.
Withers, D. J., Burks, D. J., Towery, H. H., et al.: Irs-2 coordinates Igf-1 receptor-mediated β-cell development and peripheral insulin signalling. Nat. Genet., 1999, 23(1), 32–40.
Kulkarni, R. N.: Receptors for insulin and insulin-like growth factor-1 and insulin receptor substrate-1 mediate pathways that regulate islet function. Biochem. Soc. Trans., 2002, 30(2), 317–322.
Lee, Y. H., White, M. F.: Insulin receptor substrate proteins and diabetes. Arch. Pharm. Res., 2004, 27(4), 361–370.
Hennige, A. M., Ozcan, U., Okada, T., et al.: Alterations in growth and apoptosis of insulin receptor substrate-1-deficient β-cells. Am. J. Physiol. Endocrinol. Metab., 2005, 289(2), E337–E346.
Zhou, L., Cai, X., Han, X., et al.: P38 plays an important role in glucolipotoxicity-induced apoptosis in INS-1 cells. J. Diabetes Res., 2014, 2014, 834528.
Nemcova-Furstova, V., Balusikova, K., Sramek, J., et al.: Caspase-2 and JNK activated by saturated fatty acids are not involved in apoptosis induction but modulate ER stress in human pancreatic β-cells. Cell. Physiol. Biochem., 2013, 31(2–3), 277–289.
Prause, M., Christensen, D. P., Billestrup, N., et al.: JNK1 protects against glucolipotoxicity-mediated beta-cell apoptosis. PLoS ONE, 2014, 9(1), e87067.
Chan, J. Y., Luzuriaga, J., Maxwell, E. L., et al.: The balance between adaptive and apoptotic unfolded protein responses regulates β-cell death under ER stress conditions through XBP1, CHOP and JNK. Mol. Cell. Endocrinol., 2015, 413, 189–201.
Akash, M. S., Shen, Q., Rehman, K., et al.: Interleukin-1 receptor antagonist: a new therapy for type 2 diabetes mellitus. J. Pharm. Sci., 2012, 101(5), 1647–1658.
Ruan, H., Pownall, H. J.: The adipocyte IKK/NFκB pathway: a therapeutic target for insulin resistance. Curr. Opin. Investig. Drugs, 2009, 10(4), 346–352.
Kumar, A., Singh, U. K., Kini, S. G., et al.: JNK pathway signaling: a novel and smarter therapeutic targets for various biological diseases. Future Med. Chem., 2015, 7(15), 2065–2086.
Simon-Szabó, L., Kokas, M., Greff, Z., et al.: Novel compounds reducing IRS-1 serine phosphorylation for treatment of diabetes. Bioorg. Med. Chem. Lett., 2016, 26(2), 424–428.
Conde de la Rosa, L., Vrenken, T. E., Buist-Homan, M., et al.: Metformin protects primary rat hepatocytes against oxidative stress-induced apoptosis. Pharmacol. Res. Perspect., 2015, 3(2), e00125.
Kim, Y. H., Hwang, J. H., Kim, K. S., et al.: Metformin ameliorates acetaminophen hepatotoxicity via Gadd45β-dependent regulation of JNK signaling in mice. J. Hepatol., 2015, 63(1), 75–82.
Simon-Szabó, L., Kokas, M., Mandl, J., et al.: Metformin attenuates palmitate-induced endoplasmic reticulum stress, serine phosphorylation of IRS-1 and apoptosis in rat insulinoma cells. PLoS ONE, 2014, 9(6), e97868.