View More View Less
  • 1 Semmelweis Egyetem, Általános Orvostudományi Kar, Budapest, Pf. 2, 1428
Open access

Absztrakt

A 2-es típusú diabetes terjedése összefügg az elhízás gyakoriságának és mértékének növekedésével. A tápanyagfelesleg raktározása megviseli a zsírsejteket, ami lokális gyulladás révén felgyorsítja a triglicerid-anyagcsere körforgását és megemeli a szabad zsírsavak plazmaszintjét. A tartós zsírsavtúltengés károsítja a sejtek működését (lipotoxicitás), sőt akár programozott sejthalált is okozhat. Az aktiválódó stresszkinázok akadályozzák az inzulin-jelátvitelt, és gyakran elősegítik az apoptózist. A zsírsavtúltengés tehát az inzulinrezisztencia és a β-sejt-károsodás révén összekapcsolja az elhízást a cukorbetegséggel. A lipotoxicitással kapcsolatos kutatások – és ezen belül a telített, telítetlen, illetve transzzsírsavak hatásainak összehasonlítása – magyarázattal szolgálnak számos korábban is ismert jelenségre. Az e téren bővülő ismeretek pedig a metabolikus szindróma és a diabetes megelőzésének, illetve gyógyításának új stratégiáit kínálják. Orv. Hetil., 2016, 157(19), 733–739.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Hu, F. B.: Globalization of diabetes: the role of diet, lifestyle, and genes. Diabetes Care, 2011, 34(6), 1249–1257.

  • 2

    Ye, J.: Mechanisms of insulin resistance in obesity. Front. Med., 2013, 7(1), 14–24.

  • 3

    Li, H., Yu, X.: Emerging role of JNK in insulin resistance. Curr. Diabetes Rev., 2013, 9(5), 422–428.

  • 4

    Fain, J. N.: Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells. Vitam. Horm., 2006, 74, 443–477.

  • 5

    Yuzefovych, L., Wilson, G., Rachek, L.: Different effects of oleate vs. palmitate on mitochondrial function, apoptosis, and insulin signaling in L6 skeletal muscle cells: role of oxidative stress. Am. J. Physiol. Endocrinol. Metab., 2010, 299(6), E1096–E1105.

  • 6

    Miller, T. A., LeBrasseur, N. K., Cote, G. M., et al.: Oleate prevents palmitate-induced cytotoxic stress in cardiac myocytes. Biochem. Biophys. Res. Commun., 2005, 336(1), 309–315.

  • 7

    Sieber, J., Lindenmeyer, M. T., Kampe, K., et al.: Regulation of podocyte survival and endoplasmic reticulum stress by fatty acids. Am. J. Physiol. Renal Physiol., 2010, 299(4), F821–F829.

  • 8

    Ganguly, R., Pierce, G. N.: The toxicity of dietary trans fats. Food Chem. Toxicol., 2015, 78, 170–176.

  • 9

    Volpe, C. M., Nogueira-Machado, J. A.: The dual role of free fatty acid signaling in inflammation and therapeutics. Recent Pat. Endocr. Metab. Immune Drug Discov., 2013, 7(3), 189–197.

  • 10

    Schumann, J., Fuhrmann, H.: Impairment of NFκB activity by unsaturated fatty acids. Int. Immunopharmacol., 2010, 10(8), 978–984.

  • 11

    la Cour Poulsen, L., Siersbaek, M., Mandrup, S.: PPARs: fatty acid sensors controlling metabolism. Semin. Cell Dev. Biol., 2012, 23(6), 631–639.

  • 12

    Lambertucci, R. H., Hirabara, S. M., Silveira Ldos, R., et al.: Palmitate increases superoxide production through mitochondrial electron transport chain and NADPH oxidase activity in skeletal muscle cells. J. Cell. Physiol., 2008, 216(3), 796–804.

  • 13

    Koshkin, V., Dai, F. F., Robson-Doucette, C. A., et al.: Limited mitochondrial permeabilization is an early manifestation of palmitate-induced lipotoxicity in pancreatic β-cells. J. Biol. Chem., 2008, 283(12), 7936–7948.

  • 14

    Xu, S., Nam, S. M., Kim, J. H., et al.: Palmitate induces ER calcium depletion and apoptosis in mouse podocytes subsequent to mitochondrial oxidative stress. Cell Death Dis., 2015, 6, e1976.

  • 15

    Febbraio, M., Silverstein, R. L.: CD36: implications in cardiovascular disease. Int. J. Biochem. Cell Biol., 2007, 39(11), 2012–2030.

  • 16

    Kim, J. A., Jang, H. J., Hwang, D. H.: Toll-like receptor 4-induced endoplasmic reticulum stress contributes to impairment of vasodilator action of insulin. Am. J. Physiol. Endocrinol. Metab., 2015, 309(9), E767–E776.

  • 17

    Csala, M., Marcolongo, P., Lizák, B., et al.: Transport and transporters in the endoplasmic reticulum. Biochim. Biophys. Acta, 2007, 1768(6), 1325–1341.

  • 18

    Csala, M., Kereszturi, E., Mandl, J., et al.: The endoplasmic reticulum as the extracellular space inside the cell: role in protein folding and glycosylation. Antioxid. Redox Signal., 2012, 16(10), 1100–1108.

  • 19

    Bánhegyi, G., Csala, M., Mandl, J., et al.: Fatty acyl-CoA esters and the permeability of rat liver microsomal vesicles. Biochem. J., 1996, 320(Pt 1), 343–344.

  • 20

    Mandl, J., Mészáros, T., Bánhegyi, G., et al.: Endoplasmic reticulum: nutrient sensor in physiology and pathology. Trends Endocrinol. Metab., 2009, 20(4), 194–201.

  • 21

    Urano, F., Wang, X., Bertolotti, A., et al.: Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science, 2000, 287(5453), 664–666.

  • 22

    Hu, P., Han, Z., Couvillon, A. D., et al.: Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1α-mediated NF-κB activation and down-regulation of TRAF2 expression. Mol. Cell. Biol., 2006, 26(8), 3071–3084.

  • 23

    Zambó, V., Simon-Szabó, L., Szelényi, P., et al.: Lipotoxicity in the liver. World J. Hepatol., 2013, 5(10), 550–557.

  • 24

    Mantzaris, M. D., Tsianos, E. V., Galaris, D.: Interruption of triacylglycerol synthesis in the endoplasmic reticulum is the initiating event for saturated fatty acid-induced lipotoxicity in liver cells. FEBS J., 2011, 278(3), 519–530.

  • 25

    Peter, A., Weigert, C., Staiger, H., et al.: Individual stearoyl-CoA desaturase 1 expression modulates endoplasmic reticulum stress and inflammation in human myotubes and is associated with skeletal muscle lipid storage and insulin sensitivity in vivo. Diabetes, 2009, 58(8), 1757–1765.

  • 26

    Green, C. D., Olson, L. K.: Modulation of palmitate-induced endoplasmic reticulum stress and apoptosis in pancreatic β-cells by stearoyl-CoA desaturase and Elovl6. Am. J. Physiol. Endocrinol. Metab., 2011, 300(4), E640–E649.

  • 27

    Volmer, R., van der Ploeg, K., Ron, D.: Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. Proc. Natl. Acad. Sci. U.S.A., 2013, 110(12), 4628–4633.

  • 28

    Giovannone, B., Scaldaferri, M. L., Federici, M., et al.: Insulin receptor substrate (IRS) transduction system: distinct and overlapping signaling potential. Diabetes Metab. Res. Rev., 2000, 16(6), 434–441.

  • 29

    Ragheb, R., Shanab, G. M., Medhat, A. M., et al.: Free fatty acid-induced muscle insulin resistance and glucose uptake dysfunction: evidence for PKC activation and oxidative stress-activated signaling pathways. Biochem. Biophys. Res. Commun., 2009, 389(2), 211–216.

  • 30

    Sharma, R. B., Alonso, L. C.: Lipotoxicity in the pancreatic beta cell: not just survival and function, but proliferation as well? Curr. Diab. Rep., 2014, 14(6), 492.

  • 31

    Tuo, Y., Feng, D. D., Wang, D. F., et al.: Long-term in vitro treatment of INS-1 rat pancreatic β-cells by unsaturated free fatty acids protects cells against gluco- and lipotoxicities via activation of GPR40 receptors. Clin. Exp. Pharmacol. Physiol., 2012, 39(5), 423–428.

  • 32

    Withers, D. J., Burks, D. J., Towery, H. H., et al.: Irs-2 coordinates Igf-1 receptor-mediated β-cell development and peripheral insulin signalling. Nat. Genet., 1999, 23(1), 32–40.

  • 33

    Kulkarni, R. N.: Receptors for insulin and insulin-like growth factor-1 and insulin receptor substrate-1 mediate pathways that regulate islet function. Biochem. Soc. Trans., 2002, 30(2), 317–322.

  • 34

    Lee, Y. H., White, M. F.: Insulin receptor substrate proteins and diabetes. Arch. Pharm. Res., 2004, 27(4), 361–370.

  • 35

    Hennige, A. M., Ozcan, U., Okada, T., et al.: Alterations in growth and apoptosis of insulin receptor substrate-1-deficient β-cells. Am. J. Physiol. Endocrinol. Metab., 2005, 289(2), E337–E346.

  • 36

    Zhou, L., Cai, X., Han, X., et al.: P38 plays an important role in glucolipotoxicity-induced apoptosis in INS-1 cells. J. Diabetes Res., 2014, 2014, 834528.

  • 37

    Nemcova-Furstova, V., Balusikova, K., Sramek, J., et al.: Caspase-2 and JNK activated by saturated fatty acids are not involved in apoptosis induction but modulate ER stress in human pancreatic β-cells. Cell. Physiol. Biochem., 2013, 31(2–3), 277–289.

  • 38

    Prause, M., Christensen, D. P., Billestrup, N., et al.: JNK1 protects against glucolipotoxicity-mediated beta-cell apoptosis. PLoS ONE, 2014, 9(1), e87067.

  • 39

    Chan, J. Y., Luzuriaga, J., Maxwell, E. L., et al.: The balance between adaptive and apoptotic unfolded protein responses regulates β-cell death under ER stress conditions through XBP1, CHOP and JNK. Mol. Cell. Endocrinol., 2015, 413, 189–201.

  • 40

    Akash, M. S., Shen, Q., Rehman, K., et al.: Interleukin-1 receptor antagonist: a new therapy for type 2 diabetes mellitus. J. Pharm. Sci., 2012, 101(5), 1647–1658.

  • 41

    Ruan, H., Pownall, H. J.: The adipocyte IKK/NFκB pathway: a therapeutic target for insulin resistance. Curr. Opin. Investig. Drugs, 2009, 10(4), 346–352.

  • 42

    Kumar, A., Singh, U. K., Kini, S. G., et al.: JNK pathway signaling: a novel and smarter therapeutic targets for various biological diseases. Future Med. Chem., 2015, 7(15), 2065–2086.

  • 43

    Simon-Szabó, L., Kokas, M., Greff, Z., et al.: Novel compounds reducing IRS-1 serine phosphorylation for treatment of diabetes. Bioorg. Med. Chem. Lett., 2016, 26(2), 424–428.

  • 44

    Conde de la Rosa, L., Vrenken, T. E., Buist-Homan, M., et al.: Metformin protects primary rat hepatocytes against oxidative stress-induced apoptosis. Pharmacol. Res. Perspect., 2015, 3(2), e00125.

  • 45

    Kim, Y. H., Hwang, J. H., Kim, K. S., et al.: Metformin ameliorates acetaminophen hepatotoxicity via Gadd45β-dependent regulation of JNK signaling in mice. J. Hepatol., 2015, 63(1), 75–82.

  • 46

    Simon-Szabó, L., Kokas, M., Mandl, J., et al.: Metformin attenuates palmitate-induced endoplasmic reticulum stress, serine phosphorylation of IRS-1 and apoptosis in rat insulinoma cells. PLoS ONE, 2014, 9(6), e97868.

 

The author instructions are available in PDF.
Instructions for Authors in Hungarian HERE.

 

Mendeley citation style is available HERE.
  • Impact Factor (2019): 0.497
  • Scimago Journal Rank (2018): 0.176
  • SJR Hirsch-Index (2018): 20
  • SJR Quartile Score (2018): Q3 Medicine (miscellaneous)
  • Impact Factor (2018): 0.564
  • Scimago Journal Rank (2018): 0.193
  • SJR Hirsch-Index (2018): 18
  • SJR Quartile Score (2018): Q3 Medicine (miscellaneous)

Language: Hungarian

Founded in 1857
Publication: Weekly, one volume of 52 issues annually

Senior editors

Editor(s)-in-Chief: Papp Zoltán

Read the professional career of Papp Zoltán HERE.

 

Editorial Board

Click for the Editorial Board

Akadémiai Kiadó
Address: Prielle Kornélia u. 21-35. H-1117 Budapest, Hungary
Phone: (+36 1) 464 8235 ---- Fax: (+36 1) 464 8221
Email: orvosihetilap@akkrt.hu