View More View Less
  • 1 Semmelweis Egyetem, Általános Orvostudományi Kar, Budapest, Nagyvárad tér 4., 1089
  • 2 Semmelweis Egyetem, Egészségtudományi Kar, Budapest
  • 3 Magyar Honvédség Egészségügyi Központ, Honvédkórház, Budapest
  • 4 Testnevelési Egyetem, Természettudományi Intézet, Budapest
Open access

Absztrakt

A legtöbb fejlett országban a vénás betegségek előfordulása és az abból adódó komplikációk meghaladják az artériás betegségekét, ezért nagyon fontos, hogy a vénák fiziológiás és patofiziológiás működését és az ezeket szabályozó mechanizmusokat minél pontosabban megismerjük. A kisvénák és venulák egyik fő feladata a vénás vér szívbe történő visszaáramlásának biztosítása és a kapillárisokban történő folyadékcsere és anyagcsere kontrollja a vazomotortónusuk szabályozása révén. Az ezeket a funkciókat szabályozó lokális mechanizmusokról azonban kevés az ismeretünk. Az elmúlt évtizedben a szerzők munkacsoportja izolált patkányvázizom-kisvénákon a vazomotortónust meghatározó „intrinszik” (érfalban található) mechanizmusokat kutatta. Eredményeik szerint a kisvénák tónusát az intraluminalis nyomás és nyíróerő változásai által aktivált mechanizmusok, továbbá számos, a simaizomból és az endotheliumból felszabaduló mediátorok integráltan szabályozzák. Ezek a mechanizmusok együttesen vesznek részt a posztkapilláris ellenállás és a szív telődésének szabályozásában, és ezáltal a megfelelő szöveti vérellátás és vénás visszaáramlás, illetve következményesen a perctérfogat biztosításában. Orv. Hetil., 2016, 157(21), 805–812.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Monos, E.: Physiology of the venous system. [A vénás rendszer élettana.] Semmelweis Kiadó, Budapest, 2010. [Hungarian]

  • 2

    Monos, E., Bérczi, V., Nádasy, G.: Local control of veins: biomechanical, metabolic, and humoral aspects. Physiol. Rev., 1995, 75(3), 611–666.

  • 3

    Rothe, C. F.: Venous system: Physiology of the capacitance vessels. Compr. Physiol., 2011, 397–452. Source: Handbook of Physiology. The Cardiovascular System, Peripheral Circulation and Organ Blood Flow. Originally published: 1983.

  • 4

    Monos, E., Lórant, M., Dörnyei, G., et al.: Long-term adaptation mechanisms in extremity veins supporting orthostatic tolerance. News Physiol. Sci., 2003, 18(5), 210–214.

  • 5

    Bayliss, W. M.: On the local reactions of the arterial wall to changes of internal pressure. J. Physiol., 1902, 28(3), 220–231.

  • 6

    Kuo, L., Arko, F., Chilian, W. M., et al.: Coronary venular responses to flow and pressure. Circ. Res., 1993, 72(3), 607–615.

  • 7

    Kaley, G., Koller, A., Rodenburg, J., et al.: Regulation of arteriolar tone and responses via L-arginine pathway in skeletal muscle. Am. J. Physiol., 1992, 262(4), H987–H992.

  • 8

    Eskinder, H., Harder, D. R., Lombard, J. H.: Role of the vascular endothelium in regulating the response of small arteries of the dog kidney to transmural pressure elevation and reduced PO2. Circ. Res., 1990, 66(5), 1427–1435.

  • 9

    Harder, D. R.: Pressure-induced myogenic activation of cat cerebral arteries is dependent on intact endothelium. Circ. Res., 1987, 60(1), 102–107.

  • 10

    Rubanyi, G. M.: Endothelium-dependent pressure-induced contraction of isolated canine carotid arteries. Am. J. Physiol., 1988, 255(4), H783– H788.

  • 11

    Szekeres, M., Nádasy, G. L., Kaley, G., et al.: Nitric oxide and prostaglandins modulate pressure-induced myogenic responses of intramural coronary arterioles. J. Cardiovasc. Pharmacol., 2004, 43(2), 242–249.

  • 12

    Sun, D., Kaley, G., Koller, A.: Characteristics and origin of myogenic response in isolated gracilis muscle arterioles. Am. J. Physiol. Heart Circ. Physiol., 1994, 266(3), H1177–H1183.

  • 13

    Sun, D., Messina, E. J., Kaley, G., et al.: Characteristics and origin of myogenic response in isolated mesenteric arterioles. Am. J. Physiol. Heart Circ. Physiol., 1992, 263(5), H1486–H1491.

  • 14

    Massett, M. P., Ungvari, Z., Csiszar, A., et al.: Different roles of PKC and MAP kinases in arteriolar constrictions to pressure and agonists. Am. J. Physiol. Heart Circ. Physiol., 2002, 283(6), H2282– H2287.

  • 15

    Ungvari, Z., Csiszar, A., Huang, A., et al.: High pressure induces superoxide production in isolated arteries via protein kinase C-dependent activation of NAD(P)H oxidase. Circulation, 2003, 108(10), 1253–1258.

  • 16

    Koller, A., Bagi, Z.: Nitric oxide and H2O2 contribute to reactive dilation of isolated coronary arterioles. Am. J. Physiol. Heart Circ. Physiol., 2004, 287(6), H2461–H2467.

  • 17

    Koller, A., Huang, A.: Impaired nitric oxide-mediated flow-induced dilation in arterioles of spontaneously hypertensive rats. Circ. Res., 1994, 74(3), 416–421.

  • 18

    Racz, A., Veresh, Z., Erdei, N., et al.: Thromboxane A2 contributes to the mediation of flow-induced responses of skeletal muscle venules: role of cyclooxygenases 1 and 2. J. Vasc. Res., 2009, 46(5), 397–405.

  • 19

    Hill, M. A., Davis, M. J., Meininger, G. A., et al.: Arteriolar myogenic signalling mechanisms: Implications for local vascular function. Clin. Hemorheol. Microcirc., 2006, 34(1–2), 67–79.

  • 20

    Katusic, Z. S., Shepherd, J. T., Vanhoutte, P. M.: Endothelium-dependent contraction to stretch in canine basilar arteries. Am. J. Physiol., 1987, 252(3), H671–H673.

  • 21

    Matchkov, V. V., Tarasova, O. S., Mulvany, M. J., et al.: Myogenic response of rat femoral small arteries in relation to wall structure and [Ca(2+)](i). Am. J. Physiol. Heart Circ. Physiol., 2002, 283(1), H118–H125.

  • 22

    Wesselman, J. P., Spaan, J. A., van der Meulen, E. T., et al.: Role of protein kinase C in myogenic calcium-contraction coupling of rat cannulated mesenteric small arteries. Clin. Exp. Pharmacol. Physiol., 2001, 28(10), 848–855.

  • 23

    Drummond, H. A., Gebremedhin, D., Harder, D. R.: Degenerin/epithelial Na+ channel proteins: components of a vascular mechanosensor. Hypertension, 2004, 44(5), 643–648.

  • 24

    Kim, E. C., Choi, S. K., Lim, M., et al.: Role of endogenous ENaC and TRP channels in the myogenic response of rat posterior cerebral arteries. PLoS One, 2013, 8(12), e84194.

  • 25

    Zou, H., Ratz, P. H., Hill, M. A.: Role of myosin phosphorylation and [Ca2+]i in myogenic reactivity and arteriolar tone. Am. J. Physiol., 1995, 269(5), H1590–H1596.

  • 26

    Schubert, R., Lidington, D., Bolz, S. S.: The emerging role of Ca2+ sensitivity regulation in promoting myogenic vasoconstriction. Cardiovasc. Res., 2008, 77(1), 8–18.

  • 27

    Monos, E., Contney, S. J., Cowley, A. W. Jr., et al.: Electrical and mechanical responses of rat saphenous vein to short-term pressure load. Am. J. Physiol., 1989, 256(1), H47–H55.

  • 28

    Johns, D. G., Ao, Z., Willette, R. N., et al.: Role of p38 MAP kinase in postcapillary venule leukocyte adhesion induced by ischemia/reperfusion injury. Pharmacol. Res., 2005, 51(5), 463–471.

  • 29

    Enouri, S., Monteith, G., Johnson, R.: Characteristics of myogenic reactivity in isolated rat mesenteric veins. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2011, 300(2), R470–R478.

  • 30

    Noordergraaf, A.: Blood in motion. In: The microcirculation. Springer, Philadelphia, 2011.

  • 31

    Szentiványi, M. Jr., Bérczi, V., Hüttl, T., et al.: Venous myogenic tone and its regulation through K+ channels depends on chronic intravascular pressure. Circ. Res., 1997, 81(6), 988–995.

  • 32

    Bérczi, V., Greene, A. S., Dörnyei, G., et al.: Venous myogenic tone: studies in human and canine vessels. Am. J. Physiol., 1992, 263(2), H315–H320.

  • 33

    Dörnyei, G., Monos, E., Kaley, G., et al.: Myogenic responses of isolated rat skeletal muscle venules: modulation by norepinephrine and endothelium. Am. J. Physiol., 1996, 271(1), H267–H272.

  • 34

    Dubroca, C., You, D., Lévy, B. I., et al.: Involvement of RhoA/Rho kinase pathway in myogenic tone in the rabbit facial vein. Hypertension, 2005, 45(5), 974–979.

  • 35

    Koller, A., Messina, E. J., Wolin, M. S., et al.: Endothelial impairment inhibits prostaglandin and EDRF-mediated arteriolar dilation in vivo. Am. J. Physiol., 1989, 257(6), H1966–H1970.

  • 36

    Moncada, S., Palmer, R. M., Higgs, E. A.: Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev., 1991, 43(2), 109–142.

  • 37

    Moncada, S., Vane, J. R.: Prostacyclin in the cardiovascular system. Adv. Prostaglandin Thromboxane Res., 1980, 6, 43–60.

  • 38

    Rubanyi, G. M.: Vascular effects of oxygen-derived free radicals. Free Radic. Biol. Med., 1988, 4(2), 107–120.

  • 39

    Taylor, S. G., Weston, A. H.: Endothelium-derived hyperpolarizing factor: a new endogenous inhibitor from the vascular endothelium. Trends Pharmacol. Sci., 1988, 9(8), 272–274.

  • 40

    Reffelmann, T., Kloner, R. A.: The no-reflow phenomenon: A basic mechanism of myocardial ischemia and reperfusion. Basic Res. Cardiol., 2006, 101(5), 359–372.

  • 41

    Koller, A., Dornyei, G., Kaley, G.: Flow-induced responses in skeletal muscle venules: modulation by nitric oxide and prostaglandins. Am. J. Physiol., 1998, 275(3), H831–H836.

  • 42

    Dornyei, G., Kaley, G., Koller, A.: Release of nitric oxide and prostaglandin H2 to acetylcholine in skeletal muscle venules. Am. J. Physiol., 1997, 272(6), H2541–H2546.

  • 43

    Falcone, J. C., Davis, M. J., Meininger, G. A.: Endothelial independence of myogenic response in isolated skeletal muscle arterioles. Am. J. Physiol., 1991, 260(1), H130–H135.

  • 44

    Huang, A., Sun, D., Koller, A., et al.: Gender difference in myogenic tone of rat arterioles is due to estrogen-induced, enhanced release of NO. Am. J. Physiol., 1997, 272(4), H1804–H1809.

  • 45

    Sinzinger, H., Fitscha, P.: Prostacyclin (PGI2) contracts normal and varicose human saphenous veins. Vasa, 1984, 13(3), 228–230.

  • 46

    Aksoy, M. O., Harakal, C., Smith, J. B., et al.: Mediation of bradykinin-induced contraction in canine veins via thromboxane/prostaglandin endoperoxide receptor activation. Br. J. Pharmacol., 1990, 99(3), 461–466.

  • 47

    Brunkwall, J. S., Stanley, J. C., Graham, L. M., et al.: Influence of pressure, flow rate, and pulsatility on release of 6-keto-PGF1α and thromboxane B2 in ex vivo–perfused canine veins. J. Vasc. Surg., 1988, 7(1), 99–107.

  • 48

    Davis, M. J.: Spontaneous contractions of isolated bat wing venules are inhibited by luminal flow. Am. J. Physiol., 1993, 264(4), H1174–H1186.

  • 49

    Fukaya, Y., Ohhashi, T.: Acetylcholine- and flow-induced production and release of nitric oxide in arterial and venous endothelial cells. Am. J. Physiol., 1996, 270(1), H99–H106.

  • 50

    Staiculescu, M. C., Foote, C., Meininger, G. A., et al.: The role of reactive oxygen species in microvascular remodeling. Int. J. Mol. Sci., 2014, 15(12), 23792–23835.

  • 51

    Miura, H., Bosnjak, J. J., Ning, G., et al.: Role for hydrogen peroxide in flow-induced dilation of human coronary arterioles. Circ. Res., 2003, 92(2), e31–e40.

  • 52

    Debreczeni, B., Veresh, Z., Gara, E., et al.: Hydrogen peroxide via thromboxane A2 receptors mediates myogenic response of small skeletal muscle veins in rats. Clin. Hemorheol. Microcirc., 2013, 54(4), 393–407.

  • 53

    Voisin, M. B., Pröbstl, D., Nourshargh, S.: Venular basement membranes ubiquitously express matrix protein low-expression regions: characterization in multiple tissues and remodeling during inflammation. Am. J. Pathol., 2010, 176(1), 482–495.

  • 54

    Tamas, R., Nemeth, N., Brath, E., et al: Hemorheological, morphological, and oxidative changes during ischemia-reperfusion of latissimus dorsi muscle flaps in a canine model. Microsurgery, 2010, 30(4), 282–288.

  • 55

    Starkebaum, G., Harlan, J. M.: Endothelial cell injury due to copper-catalyzed hydrogen peroxide generation from homocysteine. J. Clin. Invest., 1986, 77(4), 1370–1376.

  • 56

    Haskins, K., Bradley, B., Powers, K., et al.: Oxidative stress in type 1 diabetes. Ann. N.Y. Acad. Sci., 2003, 1005, 43–54.

  • 57

    Sonta, T., Inoguchi, T., Tsubouchi, H., et al.: Evidence for contribution of vascular NAD(P)H oxidase to increased oxidative stress in animal models of diabetes and obesity. Free Radic. Biol. Med., 2004, 37(1), 115–123.

  • 58

    Perkins, K. A., Pershad, S., Chen, Q., et al.: The effects of modulating eNOS activity and coupling in ischemia/reperfusion (I/R). Naunyn Schmiedebergs Arch. Pharmacol., 2012, 385(1), 27–38.

  • 59

    Root, R. K., Metcalf, J. A.: H2O2 release from human granulocytes during phagocytosis. Relationship to superoxide anion formation and cellular catabolism of H2O2: studies with normal and cytochalasin B-treated cells. J. Clin. Invest., 1977, 60(6), 1266–1279.

  • 60

    Zweier, J. L., Kuppusamy, P., Thompson-Gorman, S., et al.: Measurement and characterization of free radical generation in reoxygenated human endothelial cells. Am. J. Physiol., 1994, 266(3), C700–C708.

  • 61

    Rácz, I. B., Illyés, G., Sarkadi, L., et al.: The functional and morphological damage of ischemic reperfused skeletal muscle. Eur. Surg. Res., 1997, 29(4), 254–263.