A legtöbb fejlett országban a vénás betegségek előfordulása és az abból adódó komplikációk meghaladják az artériás betegségekét, ezért nagyon fontos, hogy a vénák fiziológiás és patofiziológiás működését és az ezeket szabályozó mechanizmusokat minél pontosabban megismerjük. A kisvénák és venulák egyik fő feladata a vénás vér szívbe történő visszaáramlásának biztosítása és a kapillárisokban történő folyadékcsere és anyagcsere kontrollja a vazomotortónusuk szabályozása révén. Az ezeket a funkciókat szabályozó lokális mechanizmusokról azonban kevés az ismeretünk. Az elmúlt évtizedben a szerzők munkacsoportja izolált patkányvázizom-kisvénákon a vazomotortónust meghatározó „intrinszik” (érfalban található) mechanizmusokat kutatta. Eredményeik szerint a kisvénák tónusát az intraluminalis nyomás és nyíróerő változásai által aktivált mechanizmusok, továbbá számos, a simaizomból és az endotheliumból felszabaduló mediátorok integráltan szabályozzák. Ezek a mechanizmusok együttesen vesznek részt a posztkapilláris ellenállás és a szív telődésének szabályozásában, és ezáltal a megfelelő szöveti vérellátás és vénás visszaáramlás, illetve következményesen a perctérfogat biztosításában. Orv. Hetil., 2016, 157(21), 805–812.
Monos, E.: Physiology of the venous system. [A vénás rendszer élettana.] Semmelweis Kiadó, Budapest, 2010. [Hungarian]
Monos, E., Bérczi, V., Nádasy, G.: Local control of veins: biomechanical, metabolic, and humoral aspects. Physiol. Rev., 1995, 75(3), 611–666.
Rothe, C. F.: Venous system: Physiology of the capacitance vessels. Compr. Physiol., 2011, 397–452. Source: Handbook of Physiology. The Cardiovascular System, Peripheral Circulation and Organ Blood Flow. Originally published: 1983.
Monos, E., Lórant, M., Dörnyei, G., et al.: Long-term adaptation mechanisms in extremity veins supporting orthostatic tolerance. News Physiol. Sci., 2003, 18(5), 210–214.
Bayliss, W. M.: On the local reactions of the arterial wall to changes of internal pressure. J. Physiol., 1902, 28(3), 220–231.
Kuo, L., Arko, F., Chilian, W. M., et al.: Coronary venular responses to flow and pressure. Circ. Res., 1993, 72(3), 607–615.
Kaley, G., Koller, A., Rodenburg, J., et al.: Regulation of arteriolar tone and responses via L-arginine pathway in skeletal muscle. Am. J. Physiol., 1992, 262(4), H987–H992.
Eskinder, H., Harder, D. R., Lombard, J. H.: Role of the vascular endothelium in regulating the response of small arteries of the dog kidney to transmural pressure elevation and reduced PO2. Circ. Res., 1990, 66(5), 1427–1435.
Harder, D. R.: Pressure-induced myogenic activation of cat cerebral arteries is dependent on intact endothelium. Circ. Res., 1987, 60(1), 102–107.
Rubanyi, G. M.: Endothelium-dependent pressure-induced contraction of isolated canine carotid arteries. Am. J. Physiol., 1988, 255(4), H783– H788.
Szekeres, M., Nádasy, G. L., Kaley, G., et al.: Nitric oxide and prostaglandins modulate pressure-induced myogenic responses of intramural coronary arterioles. J. Cardiovasc. Pharmacol., 2004, 43(2), 242–249.
Sun, D., Kaley, G., Koller, A.: Characteristics and origin of myogenic response in isolated gracilis muscle arterioles. Am. J. Physiol. Heart Circ. Physiol., 1994, 266(3), H1177–H1183.
Sun, D., Messina, E. J., Kaley, G., et al.: Characteristics and origin of myogenic response in isolated mesenteric arterioles. Am. J. Physiol. Heart Circ. Physiol., 1992, 263(5), H1486–H1491.
Massett, M. P., Ungvari, Z., Csiszar, A., et al.: Different roles of PKC and MAP kinases in arteriolar constrictions to pressure and agonists. Am. J. Physiol. Heart Circ. Physiol., 2002, 283(6), H2282– H2287.
Ungvari, Z., Csiszar, A., Huang, A., et al.: High pressure induces superoxide production in isolated arteries via protein kinase C-dependent activation of NAD(P)H oxidase. Circulation, 2003, 108(10), 1253–1258.
Koller, A., Bagi, Z.: Nitric oxide and H2O2 contribute to reactive dilation of isolated coronary arterioles. Am. J. Physiol. Heart Circ. Physiol., 2004, 287(6), H2461–H2467.
Koller, A., Huang, A.: Impaired nitric oxide-mediated flow-induced dilation in arterioles of spontaneously hypertensive rats. Circ. Res., 1994, 74(3), 416–421.
Racz, A., Veresh, Z., Erdei, N., et al.: Thromboxane A2 contributes to the mediation of flow-induced responses of skeletal muscle venules: role of cyclooxygenases 1 and 2. J. Vasc. Res., 2009, 46(5), 397–405.
Hill, M. A., Davis, M. J., Meininger, G. A., et al.: Arteriolar myogenic signalling mechanisms: Implications for local vascular function. Clin. Hemorheol. Microcirc., 2006, 34(1–2), 67–79.
Katusic, Z. S., Shepherd, J. T., Vanhoutte, P. M.: Endothelium-dependent contraction to stretch in canine basilar arteries. Am. J. Physiol., 1987, 252(3), H671–H673.
Matchkov, V. V., Tarasova, O. S., Mulvany, M. J., et al.: Myogenic response of rat femoral small arteries in relation to wall structure and [Ca(2+)](i). Am. J. Physiol. Heart Circ. Physiol., 2002, 283(1), H118–H125.
Wesselman, J. P., Spaan, J. A., van der Meulen, E. T., et al.: Role of protein kinase C in myogenic calcium-contraction coupling of rat cannulated mesenteric small arteries. Clin. Exp. Pharmacol. Physiol., 2001, 28(10), 848–855.
Drummond, H. A., Gebremedhin, D., Harder, D. R.: Degenerin/epithelial Na+ channel proteins: components of a vascular mechanosensor. Hypertension, 2004, 44(5), 643–648.
Kim, E. C., Choi, S. K., Lim, M., et al.: Role of endogenous ENaC and TRP channels in the myogenic response of rat posterior cerebral arteries. PLoS One, 2013, 8(12), e84194.
Zou, H., Ratz, P. H., Hill, M. A.: Role of myosin phosphorylation and [Ca2+]i in myogenic reactivity and arteriolar tone. Am. J. Physiol., 1995, 269(5), H1590–H1596.
Schubert, R., Lidington, D., Bolz, S. S.: The emerging role of Ca2+ sensitivity regulation in promoting myogenic vasoconstriction. Cardiovasc. Res., 2008, 77(1), 8–18.
Monos, E., Contney, S. J., Cowley, A. W. Jr., et al.: Electrical and mechanical responses of rat saphenous vein to short-term pressure load. Am. J. Physiol., 1989, 256(1), H47–H55.
Johns, D. G., Ao, Z., Willette, R. N., et al.: Role of p38 MAP kinase in postcapillary venule leukocyte adhesion induced by ischemia/reperfusion injury. Pharmacol. Res., 2005, 51(5), 463–471.
Enouri, S., Monteith, G., Johnson, R.: Characteristics of myogenic reactivity in isolated rat mesenteric veins. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2011, 300(2), R470–R478.
Noordergraaf, A.: Blood in motion. In: The microcirculation. Springer, Philadelphia, 2011.
Szentiványi, M. Jr., Bérczi, V., Hüttl, T., et al.: Venous myogenic tone and its regulation through K+ channels depends on chronic intravascular pressure. Circ. Res., 1997, 81(6), 988–995.
Bérczi, V., Greene, A. S., Dörnyei, G., et al.: Venous myogenic tone: studies in human and canine vessels. Am. J. Physiol., 1992, 263(2), H315–H320.
Dörnyei, G., Monos, E., Kaley, G., et al.: Myogenic responses of isolated rat skeletal muscle venules: modulation by norepinephrine and endothelium. Am. J. Physiol., 1996, 271(1), H267–H272.
Dubroca, C., You, D., Lévy, B. I., et al.: Involvement of RhoA/Rho kinase pathway in myogenic tone in the rabbit facial vein. Hypertension, 2005, 45(5), 974–979.
Koller, A., Messina, E. J., Wolin, M. S., et al.: Endothelial impairment inhibits prostaglandin and EDRF-mediated arteriolar dilation in vivo. Am. J. Physiol., 1989, 257(6), H1966–H1970.
Moncada, S., Palmer, R. M., Higgs, E. A.: Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev., 1991, 43(2), 109–142.
Moncada, S., Vane, J. R.: Prostacyclin in the cardiovascular system. Adv. Prostaglandin Thromboxane Res., 1980, 6, 43–60.
Rubanyi, G. M.: Vascular effects of oxygen-derived free radicals. Free Radic. Biol. Med., 1988, 4(2), 107–120.
Taylor, S. G., Weston, A. H.: Endothelium-derived hyperpolarizing factor: a new endogenous inhibitor from the vascular endothelium. Trends Pharmacol. Sci., 1988, 9(8), 272–274.
Reffelmann, T., Kloner, R. A.: The no-reflow phenomenon: A basic mechanism of myocardial ischemia and reperfusion. Basic Res. Cardiol., 2006, 101(5), 359–372.
Koller, A., Dornyei, G., Kaley, G.: Flow-induced responses in skeletal muscle venules: modulation by nitric oxide and prostaglandins. Am. J. Physiol., 1998, 275(3), H831–H836.
Dornyei, G., Kaley, G., Koller, A.: Release of nitric oxide and prostaglandin H2 to acetylcholine in skeletal muscle venules. Am. J. Physiol., 1997, 272(6), H2541–H2546.
Falcone, J. C., Davis, M. J., Meininger, G. A.: Endothelial independence of myogenic response in isolated skeletal muscle arterioles. Am. J. Physiol., 1991, 260(1), H130–H135.
Huang, A., Sun, D., Koller, A., et al.: Gender difference in myogenic tone of rat arterioles is due to estrogen-induced, enhanced release of NO. Am. J. Physiol., 1997, 272(4), H1804–H1809.
Sinzinger, H., Fitscha, P.: Prostacyclin (PGI2) contracts normal and varicose human saphenous veins. Vasa, 1984, 13(3), 228–230.
Aksoy, M. O., Harakal, C., Smith, J. B., et al.: Mediation of bradykinin-induced contraction in canine veins via thromboxane/prostaglandin endoperoxide receptor activation. Br. J. Pharmacol., 1990, 99(3), 461–466.
Brunkwall, J. S., Stanley, J. C., Graham, L. M., et al.: Influence of pressure, flow rate, and pulsatility on release of 6-keto-PGF1α and thromboxane B2 in ex vivo–perfused canine veins. J. Vasc. Surg., 1988, 7(1), 99–107.
Davis, M. J.: Spontaneous contractions of isolated bat wing venules are inhibited by luminal flow. Am. J. Physiol., 1993, 264(4), H1174–H1186.
Fukaya, Y., Ohhashi, T.: Acetylcholine- and flow-induced production and release of nitric oxide in arterial and venous endothelial cells. Am. J. Physiol., 1996, 270(1), H99–H106.
Staiculescu, M. C., Foote, C., Meininger, G. A., et al.: The role of reactive oxygen species in microvascular remodeling. Int. J. Mol. Sci., 2014, 15(12), 23792–23835.
Miura, H., Bosnjak, J. J., Ning, G., et al.: Role for hydrogen peroxide in flow-induced dilation of human coronary arterioles. Circ. Res., 2003, 92(2), e31–e40.
Debreczeni, B., Veresh, Z., Gara, E., et al.: Hydrogen peroxide via thromboxane A2 receptors mediates myogenic response of small skeletal muscle veins in rats. Clin. Hemorheol. Microcirc., 2013, 54(4), 393–407.
Voisin, M. B., Pröbstl, D., Nourshargh, S.: Venular basement membranes ubiquitously express matrix protein low-expression regions: characterization in multiple tissues and remodeling during inflammation. Am. J. Pathol., 2010, 176(1), 482–495.
Tamas, R., Nemeth, N., Brath, E., et al: Hemorheological, morphological, and oxidative changes during ischemia-reperfusion of latissimus dorsi muscle flaps in a canine model. Microsurgery, 2010, 30(4), 282–288.
Starkebaum, G., Harlan, J. M.: Endothelial cell injury due to copper-catalyzed hydrogen peroxide generation from homocysteine. J. Clin. Invest., 1986, 77(4), 1370–1376.
Haskins, K., Bradley, B., Powers, K., et al.: Oxidative stress in type 1 diabetes. Ann. N.Y. Acad. Sci., 2003, 1005, 43–54.
Sonta, T., Inoguchi, T., Tsubouchi, H., et al.: Evidence for contribution of vascular NAD(P)H oxidase to increased oxidative stress in animal models of diabetes and obesity. Free Radic. Biol. Med., 2004, 37(1), 115–123.
Perkins, K. A., Pershad, S., Chen, Q., et al.: The effects of modulating eNOS activity and coupling in ischemia/reperfusion (I/R). Naunyn Schmiedebergs Arch. Pharmacol., 2012, 385(1), 27–38.
Root, R. K., Metcalf, J. A.: H2O2 release from human granulocytes during phagocytosis. Relationship to superoxide anion formation and cellular catabolism of H2O2: studies with normal and cytochalasin B-treated cells. J. Clin. Invest., 1977, 60(6), 1266–1279.
Zweier, J. L., Kuppusamy, P., Thompson-Gorman, S., et al.: Measurement and characterization of free radical generation in reoxygenated human endothelial cells. Am. J. Physiol., 1994, 266(3), C700–C708.
Rácz, I. B., Illyés, G., Sarkadi, L., et al.: The functional and morphological damage of ischemic reperfused skeletal muscle. Eur. Surg. Res., 1997, 29(4), 254–263.