A szolid és hematológiai tumorok legtöbbjében mára olyan sejtpopulációkat azonosítottak, amelyek a daganatok kis százalékát alkotják, mégis kiemelkedő szerepet töltenek be a daganat terjedésének előmozdításában. Ezek az úgynevezett tumorőssejtek a szomatikus és embrionális őssejtekhez hasonló viselkedést mutatnak, aszimmetrikus osztódással önmegújításra képesek és heterogén sejtpopulációkat is létrehoznak. Egyre több kutatás alátámasztja, hogy a malignus melanomák progressziója mögött is tumoros őssejtek állnak. Nem tisztázott kérdés azonban, hogy a tumorigenicitásért vajon kizárólag melanomaőssejtek szubpopulációi felelősek vagy pluripotens őssejtté bármely melanomasejt dedifferenciálódhat. Jelen közlemény a pluripotens melanomaőssejtekről kíván átfogó képet nyújtani, különös tekintettel azokra a mechanizmusokra, amelyek a melanocyta-őssejtek differenciálódását szabályozzák, ugyanakkor a melanomaőssejtekben szabályozatlanul működnek. Bemutatásra kerül a mikrokörnyezet sejtjeinek, sejtadhéziós molekuláinak és szolúbilis faktorainak szerepe a melanomák progressziójában és heterogenitásának kialakulásában. Végül szó esik a melanoma terjedését leíró modellekről és azokról a sejtszintű markerekről, amelyek a melanomaőssejtek elkülönítésére, újabb célzott terápiák kifejlesztésére lehetőséget nyújthatnak. Orv. Hetil., 2016. 157(34), 1339–1348.
Skin cancer – melanoma. American Cancer Society. http://www.cancer.org/cancer/skincancer-melanoma
Balch, C. M., Soong, S. J., Gershenwald, J. E., et al.: Prognostic factors analysis of 17,600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. J. Clin. Oncol., 2001, 19(16), 3622–3634.
Mitchel, D. L., Fernandez, A. A.: Different types of DNA damage play different roles in the etiology of sunlight-induced melanoma. Pigment Cell Melanoma Res., 2011, 24(1), 119–124.
Platz, A., Egyhazi, S., Ringborg, U., et al.: Human cutaneous melanoma; a review of NRAS and BRAF mutation frequencies in relation to histogenetic subclass and body site. Mol. Oncol., 2008, 1(4), 395–405.
Udayakumar, D., Mahato, B., Gabree, M., et al.: Genetic determinants of cutaneous melanoma predisposition. Semin. Cutan. Med. Surg., 2010, 29(3), 190–195.
Taylor, N. J., Busam, K. J., From, L., et al.: Inherited variation at MC1R and histological characteristics of primary melanoma. PLoS ONE, 2015, 10(3), e0119920.
Zhou, L., Yang, K., Andl, T., et al.: Perspective of targeting cancer-associated fibroblasts in melanoma. J. Cancer, 2015, 6(8), 717–726.
Senft, D., Ronai, Z. A.: Immunogenic, cellular, and angiogenic drivers of tumor dormancy – a melanoma view. Pigment Cell Melanoma Res., 2016, 29(1), 27–42.
Arkenau, H. T., Kefford, R., Long, G. V.: Targeting BRAF for patients with melanoma. Br. J. Cancer, 2011, 104(3), 392–398.
Puntervoll, H. E., Molven, A., Akseln, L. A.: Frequencies of KIT and GNAQ mutations in acral melanoma. J. Cutan. Pathol., 2014, 41(11), 893–894.
Bonnet, D., Dick, J. E.: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive, hematopoietic cell. Nat. Med., 1997, 3(7), 730–737.
Visvader, J. E., Lindeman, G. J.: Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat. Rev. Cancer, 2008, 8(10), 755–768.
White, R. M., Zon, L. I.: Melanocytes in development, regeneration, and cancer. Cell Stem Cell, 2008, 3(3), 242–252.
Frank, N. Y., Pendse, S. S., Lapchak, P. H., et al.: Regulation of progenitor cell fusion by ABCB5 P-glycoprotein, a novel human ATP-binding cassette transporter. J. Biol. Chem., 2003, 278(47), 47156–47165.
Cano, A., Pérez-Moreno, M. A., Rodrigo, I., et al.: The transcription factor Snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol., 2000, 2(2), 76–83.
Mort, R. L., Jackson, I. J., Patton, E. E.: The melanocyte lineage in development and disease. Development, 2015, 142(4), 620–632.
Lang, D., Lu, M. M., Huang, L., et al.: Pax3 functions at a nodal point in melanocyte stem cell differentiation. Nature, 2005, 433(7028), 884–887.
Wehrle-Haller, B., Weston, J. A.: Soluble and cell-bound forms of steel factor activity play distinct roles in melanocyte precursor dispersal and survival on the lateral neural crest migration pathway. Development, 1995, 121(3), 731–742.
Kumano, K., Masuda, S., Sata, M., et al.: Both Notch1 and Notch2 contribute to the regulation of melanocyte homeostasis. Pigment Cell Melanoma Res., 2008, 21(1), 70–78.
Nishimura, E. K., Suzuki, M., Igras, V., et al.: Key roles for transforming growth factor beta in melanocyte stem cell maintenance. Cell Stem Cell, 2010, 6(2), 130–140.
Ranson, M., Posen, S., Mason, R. S.: Extracellular matrix modulates the function of human melanocytes but not melanoma cells. J. Cell. Physiol., 1988, 136(2), 281–288.
Gostyński, A., Pasmooij, A. M., Del Rio, M., et al.: Pigmentation and melanocyte supply to the epidermis depend on type XVII collagen. Exp. Dermatol., 2014, 23(2), 130–132.
Quail, D. F., Joyce, J. A.: Microenvironmental regulation of tumor progression and metastasis. Nat. Med., 2013, 19(11), 1423–1437.
Anderberg, C., Li, H., Fredriksson, L., et al.: Paracrine signaling by platelet-derived growth factor-CC promotes tumor growth by recruitment of cancer-associated fibroblasts. Cancer Res., 2009, 69(1), 369–378.
Koenig, A., Mueller, C., Hasel, C., et al.: Collagen type I induces disruption of E-cadherin-mediated cell-cell contacts and promotes proliferation of pancreatic carcinoma cells. Cancer Res., 2006, 66(9), 4662–4671.
Kessenbrock, K., Plaks, V., Werb, Z.: Matrix metalloproteinases: regulators of the tumor microenvironment. Cell, 2010, 141(1), 52–67.
Kobie, J. J., Akporiaye, E. T.: Immunosuppressive role of transforming growth factor beta in breast cancer. Clin. Applied Immunol. Rev., 2003, 3(6), 277–287.
Oshimori, N., Oristian, D., Fuchs, E.: TGF-β promotes heterogeneity and drug resistance in squamous cell carcinoma. Cell, 2015, 160(5), 963–976.
Javelaud, D., Alexaki, V. I., Mauviel, A.: Transforming growth factor-beta in cutaneous melanoma. Pigment Cell Melanoma Res., 2008, 21(2), 123–132.
Rothhammer, T., Bataille, F., Spruss, T., et al.: Functional implication of BMP4 expression on angiogenesis in malignant melanoma. Oncogene, 2007, 26(28), 4158–4170.
Seftor, E. A., Seftor, R. E., Weldon, D. S., et al.: Melanoma tumor cell heterogeneity: a molecular approach to study subpopulations expressing the embryonic morphogen nodal. Semin. Oncol., 2014, 41(2), 259–266.
Seftor, R. E., Hess, A. R., Seftor, E. A., et al.: Tumor cell vasculogenic mimicry: from controversy to therapeutic promise. Am. J. Pathol., 2012, 181(4), 1115–1125.
Hendrix, M. J., Seftor, E. A., Meltzer, P. S., et al.: Expression and functional significance of VE-cadherin in aggressive human melanoma cells: Role in vasculogenic mimicry. Proc. Natl. Acad. Sci. U.S.A., 2001, 98(14), 8018–8023.
Stecca, B., Mas, C., Clement, V., et al.: Melanomas require HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proc. Natl. Acad. Sci. U.S.A., 2007, 104(14), 5895–5900.
Sinnberg, T., Menzel, M., Ewerth, D., et al.: β-catenin signaling increases during melanoma progression and promotes tumor cell survival and chemoresistance. PLoS ONE, 2011, 6(8), e23429.
Wang, E., Voiculescu, S., Le Poole, I. C., et al.: Clonal persistence and evolution during a decade of recurrent melanoma. J. Invest. Dermatol., 2006, 126(6), 1372–1377.
Shakhova, O., Sommer, L.: Testing the cancer stem cell hypothesis in melanoma: the clinics will tell. Cancer Lett., 2013, 338(1), 74–81.
Fang, D., Nguyen, T. K., Leishear, K., et al.: A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res., 2005, 65(20), 9328–9337.
Schmidt, P., Kopecky, C., Hombach, A., et al.: Eradication of melanomas by targeted elimination of a minor subset of tumor cells. Proc. Natl. Acad. Sci. U.S.A., 2011, 108(6), 2474–2479.
Pinc, A., Somasundaram, R., Wagner, C., et al.: Targeting CD20 in melanoma patients at high risk of disease recurrence. Mol. Ther., 2012, 20(5), 1056–1062.
Robey, R. W., Polgar, O., Deeken, J., et al.: ABCG2: determining its relevance in clinical drug resistance. Cancer Metastasis Rev., 2007, 26(1), 39–57.
Schatton, T., Murphy, G. F., Frank, N. Y., et al.: Identification of cells initiating human melanomas. Nature, 2008, 451(7176), 345–349.
Rappa, G., Fodstad, O., Lorico, A.: The stem cell-associated antigen CD133 (Prominin-1) is a molecular therapeutic target for metastatic melanoma. Stem Cells, 2008, 26(12), 3008–3017.
Civenni, G., Walter, A., Kobert, N., et al.: Human CD271-positive melanoma stem cells associated with metastasis establish tumor heterogeneity and long-term growth. Cancer Res., 2011, 71(8), 3098–3109.
Luo, Y., Dallaglio, K., Chen, Y., et al.: ALDH1A isozymes are markers of human melanoma stem cells and potential therapeutic targets. Stem Cells, 2012, 30(10), 2100–2113.
Roesch, A., Fukunaga-Kalabis, M., Schmidt, E. C., et al.: A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell, 2010, 141(4), 583–594.
Quintana, E., Shackleton, M., Foster, H. R., et al.: Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell, 2010, 18(5), 510–523.
Shakhova, O., Zingg, D., Schaefer, S. M., et al.: Sox10 promotes the formation and maintenance of giant congenital naevi and melanoma. Nat. Cell Biol., 2012, 14(8), 882–890.
Jandl, T., Revskaya, E., Jiang, Z., et al.: Melanoma stem cells in experimental melanoma are killed by radioimmunotherapy. Nucl. Med. Biol., 2013, 40(2), 177–181.