View More View Less
  • 1 Pázmány Péter Katolikus Egyetem, Budapest
  • 2 Semmelweis Egyetem, Általános Orvostudományi Kar, Budapest
Open access

Absztrakt

A szolid és hematológiai tumorok legtöbbjében mára olyan sejtpopulációkat azonosítottak, amelyek a daganatok kis százalékát alkotják, mégis kiemelkedő szerepet töltenek be a daganat terjedésének előmozdításában. Ezek az úgynevezett tumorőssejtek a szomatikus és embrionális őssejtekhez hasonló viselkedést mutatnak, aszimmetrikus osztódással önmegújításra képesek és heterogén sejtpopulációkat is létrehoznak. Egyre több kutatás alátámasztja, hogy a malignus melanomák progressziója mögött is tumoros őssejtek állnak. Nem tisztázott kérdés azonban, hogy a tumorigenicitásért vajon kizárólag melanomaőssejtek szubpopulációi felelősek vagy pluripotens őssejtté bármely melanomasejt dedifferenciálódhat. Jelen közlemény a pluripotens melanomaőssejtekről kíván átfogó képet nyújtani, különös tekintettel azokra a mechanizmusokra, amelyek a melanocyta-őssejtek differenciálódását szabályozzák, ugyanakkor a melanomaőssejtekben szabályozatlanul működnek. Bemutatásra kerül a mikrokörnyezet sejtjeinek, sejtadhéziós molekuláinak és szolúbilis faktorainak szerepe a melanomák progressziójában és heterogenitásának kialakulásában. Végül szó esik a melanoma terjedését leíró modellekről és azokról a sejtszintű markerekről, amelyek a melanomaőssejtek elkülönítésére, újabb célzott terápiák kifejlesztésére lehetőséget nyújthatnak. Orv. Hetil., 2016. 157(34), 1339–1348.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Skin cancer – melanoma. American Cancer Society. http://www.cancer.org/cancer/skincancer-melanoma

  • 2

    Balch, C. M., Soong, S. J., Gershenwald, J. E., et al.: Prognostic factors analysis of 17,600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. J. Clin. Oncol., 2001, 19(16), 3622–3634.

  • 3

    Mitchel, D. L., Fernandez, A. A.: Different types of DNA damage play different roles in the etiology of sunlight-induced melanoma. Pigment Cell Melanoma Res., 2011, 24(1), 119–124.

  • 4

    Platz, A., Egyhazi, S., Ringborg, U., et al.: Human cutaneous melanoma; a review of NRAS and BRAF mutation frequencies in relation to histogenetic subclass and body site. Mol. Oncol., 2008, 1(4), 395–405.

  • 5

    Udayakumar, D., Mahato, B., Gabree, M., et al.: Genetic determinants of cutaneous melanoma predisposition. Semin. Cutan. Med. Surg., 2010, 29(3), 190–195.

  • 6

    Taylor, N. J., Busam, K. J., From, L., et al.: Inherited variation at MC1R and histological characteristics of primary melanoma. PLoS ONE, 2015, 10(3), e0119920.

  • 7

    Zhou, L., Yang, K., Andl, T., et al.: Perspective of targeting cancer-associated fibroblasts in melanoma. J. Cancer, 2015, 6(8), 717–726.

  • 8

    Senft, D., Ronai, Z. A.: Immunogenic, cellular, and angiogenic drivers of tumor dormancy – a melanoma view. Pigment Cell Melanoma Res., 2016, 29(1), 27–42.

  • 9

    Arkenau, H. T., Kefford, R., Long, G. V.: Targeting BRAF for patients with melanoma. Br. J. Cancer, 2011, 104(3), 392–398.

  • 10

    Puntervoll, H. E., Molven, A., Akseln, L. A.: Frequencies of KIT and GNAQ mutations in acral melanoma. J. Cutan. Pathol., 2014, 41(11), 893–894.

  • 11

    Bonnet, D., Dick, J. E.: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive, hematopoietic cell. Nat. Med., 1997, 3(7), 730–737.

  • 12

    Visvader, J. E., Lindeman, G. J.: Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat. Rev. Cancer, 2008, 8(10), 755–768.

  • 13

    White, R. M., Zon, L. I.: Melanocytes in development, regeneration, and cancer. Cell Stem Cell, 2008, 3(3), 242–252.

  • 14

    Frank, N. Y., Pendse, S. S., Lapchak, P. H., et al.: Regulation of progenitor cell fusion by ABCB5 P-glycoprotein, a novel human ATP-binding cassette transporter. J. Biol. Chem., 2003, 278(47), 47156–47165.

  • 15

    Cano, A., Pérez-Moreno, M. A., Rodrigo, I., et al.: The transcription factor Snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol., 2000, 2(2), 76–83.

  • 16

    Mort, R. L., Jackson, I. J., Patton, E. E.: The melanocyte lineage in development and disease. Development, 2015, 142(4), 620–632.

  • 17

    Lang, D., Lu, M. M., Huang, L., et al.: Pax3 functions at a nodal point in melanocyte stem cell differentiation. Nature, 2005, 433(7028), 884–887.

  • 18

    Wehrle-Haller, B., Weston, J. A.: Soluble and cell-bound forms of steel factor activity play distinct roles in melanocyte precursor dispersal and survival on the lateral neural crest migration pathway. Development, 1995, 121(3), 731–742.

  • 19

    Kumano, K., Masuda, S., Sata, M., et al.: Both Notch1 and Notch2 contribute to the regulation of melanocyte homeostasis. Pigment Cell Melanoma Res., 2008, 21(1), 70–78.

  • 20

    Nishimura, E. K., Suzuki, M., Igras, V., et al.: Key roles for transforming growth factor beta in melanocyte stem cell maintenance. Cell Stem Cell, 2010, 6(2), 130–140.

  • 21

    Ranson, M., Posen, S., Mason, R. S.: Extracellular matrix modulates the function of human melanocytes but not melanoma cells. J. Cell. Physiol., 1988, 136(2), 281–288.

  • 22

    Gostyński, A., Pasmooij, A. M., Del Rio, M., et al.: Pigmentation and melanocyte supply to the epidermis depend on type XVII collagen. Exp. Dermatol., 2014, 23(2), 130–132.

  • 23

    Quail, D. F., Joyce, J. A.: Microenvironmental regulation of tumor progression and metastasis. Nat. Med., 2013, 19(11), 1423–1437.

  • 24

    Anderberg, C., Li, H., Fredriksson, L., et al.: Paracrine signaling by platelet-derived growth factor-CC promotes tumor growth by recruitment of cancer-associated fibroblasts. Cancer Res., 2009, 69(1), 369–378.

  • 25

    Koenig, A., Mueller, C., Hasel, C., et al.: Collagen type I induces disruption of E-cadherin-mediated cell-cell contacts and promotes proliferation of pancreatic carcinoma cells. Cancer Res., 2006, 66(9), 4662–4671.

  • 26

    Kessenbrock, K., Plaks, V., Werb, Z.: Matrix metalloproteinases: regulators of the tumor microenvironment. Cell, 2010, 141(1), 52–67.

  • 27

    Kobie, J. J., Akporiaye, E. T.: Immunosuppressive role of transforming growth factor beta in breast cancer. Clin. Applied Immunol. Rev., 2003, 3(6), 277–287.

  • 28

    Oshimori, N., Oristian, D., Fuchs, E.: TGF-β promotes heterogeneity and drug resistance in squamous cell carcinoma. Cell, 2015, 160(5), 963–976.

  • 29

    Javelaud, D., Alexaki, V. I., Mauviel, A.: Transforming growth factor-beta in cutaneous melanoma. Pigment Cell Melanoma Res., 2008, 21(2), 123–132.

  • 30

    Rothhammer, T., Bataille, F., Spruss, T., et al.: Functional implication of BMP4 expression on angiogenesis in malignant melanoma. Oncogene, 2007, 26(28), 4158–4170.

  • 31

    Seftor, E. A., Seftor, R. E., Weldon, D. S., et al.: Melanoma tumor cell heterogeneity: a molecular approach to study subpopulations expressing the embryonic morphogen nodal. Semin. Oncol., 2014, 41(2), 259–266.

  • 32

    Seftor, R. E., Hess, A. R., Seftor, E. A., et al.: Tumor cell vasculogenic mimicry: from controversy to therapeutic promise. Am. J. Pathol., 2012, 181(4), 1115–1125.

  • 33

    Hendrix, M. J., Seftor, E. A., Meltzer, P. S., et al.: Expression and functional significance of VE-cadherin in aggressive human melanoma cells: Role in vasculogenic mimicry. Proc. Natl. Acad. Sci. U.S.A., 2001, 98(14), 8018–8023.

  • 34

    Stecca, B., Mas, C., Clement, V., et al.: Melanomas require HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proc. Natl. Acad. Sci. U.S.A., 2007, 104(14), 5895–5900.

  • 35

    Sinnberg, T., Menzel, M., Ewerth, D., et al.: β-catenin signaling increases during melanoma progression and promotes tumor cell survival and chemoresistance. PLoS ONE, 2011, 6(8), e23429.

  • 36

    Wang, E., Voiculescu, S., Le Poole, I. C., et al.: Clonal persistence and evolution during a decade of recurrent melanoma. J. Invest. Dermatol., 2006, 126(6), 1372–1377.

  • 37

    Shakhova, O., Sommer, L.: Testing the cancer stem cell hypothesis in melanoma: the clinics will tell. Cancer Lett., 2013, 338(1), 74–81.

  • 38

    Fang, D., Nguyen, T. K., Leishear, K., et al.: A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res., 2005, 65(20), 9328–9337.

  • 39

    Schmidt, P., Kopecky, C., Hombach, A., et al.: Eradication of melanomas by targeted elimination of a minor subset of tumor cells. Proc. Natl. Acad. Sci. U.S.A., 2011, 108(6), 2474–2479.

  • 40

    Pinc, A., Somasundaram, R., Wagner, C., et al.: Targeting CD20 in melanoma patients at high risk of disease recurrence. Mol. Ther., 2012, 20(5), 1056–1062.

  • 41

    Robey, R. W., Polgar, O., Deeken, J., et al.: ABCG2: determining its relevance in clinical drug resistance. Cancer Metastasis Rev., 2007, 26(1), 39–57.

  • 42

    Schatton, T., Murphy, G. F., Frank, N. Y., et al.: Identification of cells initiating human melanomas. Nature, 2008, 451(7176), 345–349.

  • 43

    Rappa, G., Fodstad, O., Lorico, A.: The stem cell-associated antigen CD133 (Prominin-1) is a molecular therapeutic target for metastatic melanoma. Stem Cells, 2008, 26(12), 3008–3017.

  • 44

    Civenni, G., Walter, A., Kobert, N., et al.: Human CD271-positive melanoma stem cells associated with metastasis establish tumor heterogeneity and long-term growth. Cancer Res., 2011, 71(8), 3098–3109.

  • 45

    Luo, Y., Dallaglio, K., Chen, Y., et al.: ALDH1A isozymes are markers of human melanoma stem cells and potential therapeutic targets. Stem Cells, 2012, 30(10), 2100–2113.

  • 46

    Roesch, A., Fukunaga-Kalabis, M., Schmidt, E. C., et al.: A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell, 2010, 141(4), 583–594.

  • 47

    Quintana, E., Shackleton, M., Foster, H. R., et al.: Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell, 2010, 18(5), 510–523.

  • 48

    Shakhova, O., Zingg, D., Schaefer, S. M., et al.: Sox10 promotes the formation and maintenance of giant congenital naevi and melanoma. Nat. Cell Biol., 2012, 14(8), 882–890.

  • 49

    Jandl, T., Revskaya, E., Jiang, Z., et al.: Melanoma stem cells in experimental melanoma are killed by radioimmunotherapy. Nucl. Med. Biol., 2013, 40(2), 177–181.