View More View Less
  • 1 Semmelweis Egyetem, I. Patológiai és Kísérleti Rákkutató Intézet, Budapest, Üllői út 26., 1085
  • 2 Egyesített Szent István és Szent László Kórház, Budapest
  • 3 Szegedi Tudományegyetem, Általános Orvostudományi Kar, Szeged
Open access

Absztrakt

A myelodysplasiás szindróma és az akut myeloid leukaemia döntően sporadikus megbetegedések, azonban a fiatalkorban előforduló, illetve a családi halmozódást mutató esetekről egyre gyakrabban derül ki, hogy valójában örökletes kórképek, amelyek hátterében a myeloid vérképzést szabályozó faktorok autoszomális domináns mutációi állnak. Ezen örökletes mutációk jellegzetes szindrómákat hoznak létre, amelyek fokozott kockázattal járnak myelodysplasia és akut leukaemia kialakulására (prediszpozíciós szindrómák). Jelenleg négy ilyen szindróma ismert: (1) a CEBPA-, valamint a (2) GATA2-mutációt hordozó familiáris myelodysplasia/akut leukaemia, (3) a familiáris vérlemezke-funkciózavar talaján kialakuló myelodysplasia a RUNX1 gén mutációjával és (4) a telomerázbiológiát érintő kórképek, amelyek a TERT vagy TERC gének mutációival jellemezhetők. A közelmúltban derült ki, hogy az ANKRD26, ETV6, SRP72 és DDX41 gének mutációi szintén szerepet játszhatnak familiáris myeloid kórképek kialakításában. Jelen összefoglaló közlemény célja e különleges betegségcsoportra való figyelemfelhívás, valamint e kórképek genetikai és klinikai hátterének ismertetése. Orv. Hetil., 2016, 157(8), 283–289.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Nickels, E. M., Soodalter, J., Churpek, J. E., et al.: Recognizing familial myeloid leukemia in adults. Ther. Adv. Hematol., 2013, 4(4), 254–269.

  • 2

    Smith, M. L., Cavenagh, J. D., Lister, T. A., et al.: Mutation of CEBPA in familial acute myeloid leukemia. N. Engl. J. Med., 2004, 351(23), 2403–2407.

  • 3

    Hahn, C. N., Chong, C. E., Carmichael, C. L., et al.: Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nat. Genet., 2011, 43(10), 1012–1017.

  • 4

    Song, W. J., Sullivan, M. G., Legare, R. D., et al.: Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat. Genet., 1999, 23(2), 166–175.

  • 5

    Dokal, I., Vulliamy, T.: Inherited bone marrow failure syndromes. Haematologica, 2010, 95(8), 1236–1240.

  • 6

    Kirwan, M., Walne, A. J., Plagnol, V., et al.: Exome sequencing identifies autosomal-dominant SRP72 mutations associated with familial aplasia and myelodysplasia. Am. J. Hum. Genet., 2012, 90(5), 888–892.

  • 7

    Zhang, M. Y., Churpek, J. E., Keel, S. B., et al.: Germline ETV6 mutations in familial thrombocytopenia and hematologic malignancy. Nat. Genet., 2015, 47(2), 180–185.

  • 8

    Polprasert, C., Schulze, I., Sekeres, M. A., et al.: Inherited and somatic defects in DDX41 in myeloid neoplasms. Cancer Cell, 2015, 27(5), 658–670.

  • 9

    Pippucci, T., Savoia, A., Perrotta, S., et al.: Mutations in the 5’ UTR of ANKRD26, the ankirin repeat domain 26 gene, cause an autosomal-dominant form of inherited thrombocytopenia, THC2. Am. J. Hum. Genet., 2011, 88(1), 115–120.

  • 10

    Godley, L. A.: Inherited predisposition to acute myeloid leukemia. Semin. Hematol., 2014, 51(4), 306–321.

  • 11

    Owen, C., Barnett, M., Fitzgibbon, J.: Familial myelodysplasia and acute myeloid leukaemia – a review. Br. J. Haematol., 2008, 140(2), 123–132.

  • 12

    Antonson, P., Xanthopoulos, K. G.: Molecular cloning, sequence, and expression patterns of the human gene encoding CCAAT/enhancer binding protein alpha (C/EBP alpha). Biochem. Biophys. Res. Commun., 1995, 215(1), 106–113.

  • 13

    Pabst, T., Mueller, B. U.: Complexity of CEBPA dysregulation in human acute myeloid leukemia. Clin. Cancer Res., 2009, 15(17), 5303–5307.

  • 14

    Pabst, T., Eyholzer, M., Haefliger, S., et al.: Somatic CEBPA mutations are a frequent second event in families with germline CEBPA mutations and familial acute myeloid leukemia. J. Clin. Oncol., 2008, 26(31), 5088–5093.

  • 15

    Wouters, B. J., Löwenberg, B., Erpelinck-Verschueren, C. A., et al.: Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood, 2009, 113(13), 3088–3091.

  • 16

    Bienz, M., Ludwig, M., Leibundgut, E. O., et al.: Risk assessment in patients with acute myeloid leukemia and a normal karyotype. Clin. Cancer Res., 2005, 11(4), 1416–1424.

  • 17

    Stelljes, M., Corbacioglu, A., Schlenk, R. F., et al.: Allogeneic stem cell transplant to eliminate germline mutations in the gene for CCAAT-enhancer-binding protein alpha from hematopoietic cells in a family with AML. Leukemia, 2011, 25(7), 1209–1210.

  • 18

    Tawana, K., Wang, J., Renneville, A., et al.: Disease evolution and outcomes in familial AML with germline CEBPA mutations. Blood, 2015, 126(10), 1214–1223.

  • 19

    Rowley, J. D.: Identification of a translocation with quinacrine fluorescence in a patient with acute leukemia. Ann. Genet., 1973, 16(2), 109–112.

  • 20

    Liew, E., Owen, C.: Familial myelodysplastic syndromes: a review of the literature. Haematologica, 2011, 96(10), 1536–1542.

  • 21

    Churpek, J. E., Lorenz, R., Nedumgottil, S., et al.: Proposal for the clinical detection and management of patients and their family members with familial myelodysplastic syndrome/acute leukemia predisposition syndromes. Leuk. lymphoma, 2013, 54(1), 28–35.

  • 22

    Mangan, J. K., Speck, N. A.: RUNX1 mutations in clonal myeloid disorders: from conventional cytogenetics to next generation sequencing, a story 40 years in the making. Crit. Rev. Oncog., 2011, 16(1–2), 77–91.

  • 23

    Preudhomme, C., Renneville, A., Bourdon, V., et al.: High frequency of RUNX1 biallelic alteration in acute myeloid leukemia secondary to familial platelet disorder. Blood, 2009, 113(22), 5583–5587.

  • 24

    Yoshimi, A., Toya, T., Kawazu, M., et al.: Recurrent CDC25C mutations drive malignant transformation in FPD/AML. Nat. Commun., 2014, 5, 4770.

  • 25

    Ostergaard, P., Simpson, M. A., Connell, F. C., et al.: Mutations in GATA2 cause primary lymphedema associated with a predisposition to acute myeloid leukemia (Emberger syndrome). Nat. Genet., 2011, 43(10), 929–931.

  • 26

    Hsu, A. P., Sampaio, E. P., Khan, J., et al.: Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood, 2011, 118(10), 2653–2655.

  • 27

    Dickinson, R. E., Griffin, H., Bigley, V., et al.: Exome sequencing identifies GATA-2 mutation as the cause of dendritic cell, monocyte, B and NK lymphoid deficiency. Blood, 2011, 118(10), 2656–2658.

  • 28

    Rodrigues, N. P., Janzen, V., Forkert, R., et al.: Haploinsufficiency of GATA-2 perturbs adult hematopoietic stem-cell homeostasis. Blood, 2005, 106(2), 477–484.

  • 29

    Hyde, R. K., Liu, P. P.: GATA2 mutations lead to MDS and AML. Nat. Genet., 2011, 43(10), 926–927.

  • 30

    Bödör, C., Renneville, A., Smith, M., et al.: Germ-line GATA2 p.THR354MET mutation in familial myelodysplastic syndrome with acquired monosomy 7 and ASXL1 mutation demonstrating rapid onset and poor survival. Haematologica, 2012, 97(6), 890–894.

  • 31

    West, R. R., Hsu, A. P., Holland, S. M., et al.: Acquired ASXL1 mutations are common in patients with inherited GATA2 mutations and correlate with myeloid transformation. Haematologica, 2014, 99(2), 276–281.

  • 32

    Green, C. L., Tawana, K., Hills, R. K., et al.: GATA2 mutations in sporadic and familial acute myeloid leukaemia patients with CEBPA mutations. Br. J. Haematol., 2013, 161(5), 701–705.

  • 33

    Kee, Y., D’Andrea, A. D.: Molecular pathogenesis and clinical management of Fanconi anemia. J. Clin. Invest., 2012, 122(11), 3799–3806.

  • 34

    Kirwan, M., Vulliamy, T., Marrone, A., et al.: Defining the pathogenic role of telomerase mutations in myelodysplastic syndrome and acute myeloid leukemia. Hum. Mutat., 2009, 30(11), 1567–1573.

  • 35

    Olovnikov, A. M.: Telomeres, telomerase, and aging: origin of the theory. Exp. Gerontol., 1996, 31(4), 443–448.

  • 36

    West, A. H., Godley, L. A., Churpek, J. E.: Familial myelodysplastic syndrome/acute leukemia syndromes: a review and utility for translational investigations. Ann. N.Y. Acad. Sci., 2014, 1310, 111–118.

  • 37

    Heiss, N. S., Knight, S. W., Vulliamy, T. J., et al.: X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat. Genet., 1998, 19(1), 32–38.

  • 38

    Young, N. S.: Bone marrow failure and the new telomere diseases: practice and research. Hematology, 2012, 17(Suppl. 1), S18–S21.

  • 39

    Noris, P., Perrotta, S., Seri, M., et al.: Mutations in ANKRD26 are responsible for a frequent form of inherited thrombocytopenia: analysis of 78 patients from 21 families. Blood, 2011, 117(24), 6673–6680.

  • 40

    Noetzli, L., Lo, R. W., Lee-Sherick, A. B., et al.: Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia. Nat. Genet., 2015, 47(5), 535–538.

  • 41

    Churpek, J. E., Pyrtel, K., Kanchi, K. L., et al.: Genomic analysis of germ line and somatic variants in familial myelodysplasia/acute myeloid leukemia. Blood, 2015, 126(22), 2484–2490.

  • 42

    Buijs, A., Poddighe, P., van Wijk, R., et al.: A novel CBFA2 single-nucleotide mutation in familial platelet disorder with propensity to develop myeloid malignancies. Blood, 2001, 98(9), 2856–2858.

  • 43

    Fogarty, P. F., Yamaguchi, H., Wiestner, A., et al.: Late presentation of dyskeratosis congenita as apparently acquired aplastic anaemia due to mutations in telomerase RNA. Lancet, 2003, 362(9396), 1628–1630.