View More View Less
  • 1 Semmelweis Egyetem, Általános Orvostudományi Kar, Budapest, Üllői út 26., 1085
  • | 2 MTA-SE Molekuláris Medicina Kutatócsoport, Budapest
  • | 3 MTA-SE Lendület „Örökletes endokrin daganatok” Kutatócsoport, Budapest
Open access

Absztrakt:

A mikroRNS-ek (miRNS, miR) rövid – 19–25 nukleotidból álló – érett formájukban egyszálú, nem kódoló RNS-molekulák, amelyek a génexpressziót főként poszttranszkripcionális szinten befolyásolják. A mikroRNS-ek szerepet játszanak élettani folyamatokban, például a sejtdifferenciálódás és -proliferáció szabályozásában, egyedfejlődésben, vérképzésben, sejthalálban, míg aberráns expressziójuk számos betegség, köztük autoimmun betegségek, gyulladások, vascularis betegségek vagy daganatok kialakulása során megfigyelhető. A mikroRNS-ek szövetspecifikus módon fejeződnek ki. Szöveti megjelenésük mellett különböző testfolyadékokban is megtalálhatóak. Így például a vérben, az anyatejben, az ondóban, nyálban, vizeletben stb. A testfolyadékokban megjelenő mikroRNS-ek, így különösen a vér keringő mikroRNS-ei, a daganatok kórisméjében mint minimálisan invazív diagnosztikai eszközök jöhetnek szóba. Az endokrin daganatokra jellemző leírt keringő mikroRNS-kifejeződések száma eddig alacsony, főként a papillaris pajzsmirigy-carcinomára, mellékvesekéreg-carcinomára, petefészekrákra, illetve egyes neuroendokrin tumorokra szorítkozik. Tekintettel arra, hogy e daganatok egy részének szövettani diagnózisa, a malignitás megállapítása nehéz, a keringő mikroRNS-ek kutatásában jelentős távlatok rejlenek. Orv. Hetil., 2017, 158(13), 483–490.

  • 1

    Malumbres, M.: MiRNAs and cancer: An epigenetics view. Mol. Aspects Med., 2013, 34, 863–874.

  • 2

    Bartel, D. P.: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 2004, 116, 281–297.

  • 3

    Iorio, M. V., Croce, C. M.: Causes and consequences of microRNA dysregulation. Cancer J. NIH Public Access, 2012, 18, 215–222.

  • 4

    Lagos-Quintana, M., Rauhut, R., Meyer, J., et al.: New microRNAs from mouse and human. RNA, 2003, 9, 175–179.

  • 5

    Axtell, M. J., Westholm, J. O., Lai, E. C.: Vive la différence: biogenesis and evolution of microRNAs in plants and animals. Genome Biol., 2011, 12, 221.

  • 6

    Olive, V., Minella, A. C., He, L.: Outside the coding genome, mammalian microRNAs confer structural and functional complexity. Sci. Signal., 2015, 368, re2.

  • 7

    Nagy, Z., Igaz, P.: Introduction to microRNAs: Biogenesis, action, relevance of tissue microRNAs in disease pathogenesis, diagnosis and therapy – The concept of circulating microRNAs. EXS, 2015, 106, 3–30.

  • 8

    Zhang, B., Pan, X., Cobb, G. P., et al.: MicroRNAs as oncogenes and tumor suppressors. Dev. Biol., 2007, 302, 1–12.

  • 9

    Weber, J. A., Baxter, D. H., Zhang, S., et al.: The microRNA spectrum in 12 body fluids. Clin. Chem., 2010, 56, 1733–1741.

  • 10

    Jung, M., Schaefer, A., Steiner, I., et al.: Robust microRNA stability in degraded RNA preparations from human tissue and cell samples. Clin. Chem., 2010, 56, 998–1006.

  • 11

    Shahabipour, F., Banach, M., Sahebkar, A.: Exosomes as nanocarriers for siRNA delivery: paradigms and challenges. Arch. Med. Sci., 2016, 6, 1324–1326.

  • 12

    Wang, K., Yuan, Y., Cho, J. H., et al.: Comparing the microRNA spectrum between serum and plasma. PLoS ONE, 2012, 7, e41561.

  • 13

    Melnik, B. C., Kakulas, F., Geddes, D. T., et al.: Milk miRNAs: simple nutrients or systemic functional regulators? Nutr. Metab. (Lond.), 2016, 13, 42.

  • 14

    Perge, P., Nagy, Z., Decmann, Á., et al.: Potential relevance of microRNAs in inter-species epigenetic communication, and implications for disease pathogenesis. RNA Biol., 2016 okt 28. 1–11. [Epub ahead of print]

  • 15

    Ma, L., Zhang, X. Q., Zhou, D. X., et al.: Feasibility of urinary microRNA profiling detection in intrahepatic cholestasis of pregnancy and its potential as a non-invasive biomarker. Sci. Rep., 2016, 6, 31535.

  • 16

    Kessler, T., Erdmann, J., Vilne, B., et al.: Serum microRNA-1233 is a specific biomarker for diagnosing acute pulmonary embolism. J. Transl. Med., 2016, 14, 120.

  • 17

    Cramer, J. D., Fu, P., Harth, K. C., et al.: Analysis of the rising incidence of thyroid cancer using the surveillance, epidemiology and end results national cancer data registry. Surgery, 2010, 148, 1147–1153.

  • 18

    Yu, S., Liu, Y., Wang, J., et al.: Circulating microRNA profiles as potential biomarkers for diagnosis of papillary thyroid carcinoma. J. Clin. Endocrinol. Metab., 2012, 97, 2084–2092.

  • 19

    Perdas, E., Stawski, R., Nowak, D., et al.: The role of miRNA in papillary thyroid cancer in the context of miRNA Let-7 family. Int. J. Mol. Sci., 2016, 17, 909.

  • 20

    Cantara, S., Pilli, T., Sebastiani, G., et al.: Circulating miRNA95 and miRNA190 are sensitive markers for the differential diagnosis of thyroid nodules in a Caucasian population. J. Clin. Endocrinol. Metab., 2014, 99, 4190–4198.

  • 21

    Lee, Y. S., Lim, Y. S., Lee, J. C., et al.: Differential expression levels of plasma-derived miR-146b and miR-155 in papillary thyroid cancer. Oral Oncol., 2015, 51, 77–83.

  • 22

    Lee, J. C., Zhao, J. T., Gundara, J., et al.: Papillary thyroid cancer-derived exosomes contain miRNA-146b and miRNA-222. J. Surg. Res., 2015, 196, 39–48.

  • 23

    Li, M., Song, Q., Li, H., et al.: Circulating miR-25-3p and miR-451a may be potential biomarkers for the diagnosis of papillary thyroid carcinoma. PLoS ONE, 2015, 10, e0132403.

  • 24

    Igci, Y. Z., Ozkaya, M., Korkmaz, H., et al.: Expression levels of miR-30a-5p in papillary thyroid carcinoma: A comparison between serum and fine needle aspiration biopsy samples. Genet. Test. Mol. Biomarkers, 2015, 19, 418–423.

  • 25

    Zheng, J., Li, J.: Serum miRNA-203 as a potential biomarker for papillary thyroid carcinoma. Int. J. Clin. Exp. Med., 2016, 9, 14980–14986.

  • 26

    Lee, J. C., Zhao, J. T., Clifton-Bligh, R. J., et al.: MicroRNA-222 and microRNA-146b are tissue and circulating biomarkers of recurrent papillary thyroid cancer. Cancer, 2013, 119, 4358–4365.

  • 27

    Samsonov, R., Burdakov, V., Shtam, T., et al.: Plasma exosomal miR-21 and miR-181a differentiates follicular from papillary thyroid cancer. Tumor Biol., 2016, 37, 12011–12021.

  • 28

    Yamada, H., Itoh, M., Hiratsuka, I., et al.: Circulating microRNAs in autoimmune thyroid diseases. Clin. Endocrinol. (Oxf.), 2014, 81, 276–281.

  • 29

    Chabre, O., Libé, R., Assie, G., et al.: Serum miR-483-5p and miR-195 are predictive of recurrence risk in adrenocortical cancer patients. Endocr. Relat. Cancer, 2013, 20, 579–594.

  • 30

    Patel, D., Boufraqech, M., Jain, M., et al.: MiR-34a and miR-483-5p are candidate serum biomarkers for adrenocortical tumors. Surgery, 2013, 154, 1224–1229.

  • 31

    Szabó, D. R., Luconi, M., Szabó, P. M., et al.: Analysis of circulating microRNAs in adrenocortical tumors. Lab. Invest., 2013, 94, 331–339.

  • 32

    Igaz, I., Nyírő, G., Nagy, Z., et al.: Analysis of circulating microRNAs in vivo following administration of dexamethasone and adrenocorticotropin. Int. J. Endocrinol., 2015, 2015, 589230.

  • 33

    Patterson, E., Webb, R., Weisbrod, A., et al.: The microRNA expression changes associated with malignancy and SDHB mutation in pheochromocytoma. Endocr. Relat. Cancer, 2012, 19, 157–166.

  • 34

    Murray, M. J., Halsall, D. J., Hook, Elizabeth C.. et al.: Identification of microRNAs from the miR-371~373 and miR-302 clusters as potential serum biomarkers of malignant germ cell tumors. Am. J. Clin. Pathol., 2011, 135, 119–125.

  • 35

    Dieckmann, K. P., Spiekermann, M., Balks, T., et al.: MicroRNAs miR-371-3 in serum as diagnostic tools in the management of testicular germ cell tumours. Br. J. Cancer, 2012, 107, 1754–1760.

  • 36

    Syring, I., Bartels, J., Holdenrieder, S., et al.: Circulating serum miRNA (miR-367-3p, miR-371a-3p, miR-372-3p and miR-373-3p) as biomarkers in patients with testicular germ cell cancer. J. Urol., 2015, 193, 331–337.

  • 37

    Dieckmann, K. P., Spiekermann, M., Balks, T., et al.: MicroRNA miR-371a-3p – A novel serum biomarker of testicular germ cell tumors: evidence for specificity from measurements in testicular vein blood and in neoplastic hydrocele fluid. Urol. Int., 2016, 97, 76–83.

  • 38

    Flor, I., Spiekermann, M., Löning, T., et al.: Expression of microRNAs of C19MC in different histological types of testicular germ cell tumour. Cancer Genomics Proteomics, 2016, 13, 281–289.

  • 39

    Zhang, B., Cai, F. F., Zhong, X. Y.: An overview of biomarkers for the ovarian cancer diagnosis. Eur. J. Obstet. Gynecol. Reprod. Biol., 2011, 158, 119–123.

  • 40

    Kan, C. W., Hahn, M. A., Gard, G. B., et al.: Elevated levels of circulating microRNA-200 family members correlate with serous epithelial ovarian cancer. BMC Cancer, 2012, 12, 627.

  • 41

    Xu, Y. Z., Xi, Q. H., Ge, W. L., et al.: Identification of serum microRNA-21 as a biomarker for early detection and prognosis in human epithelial ovarian cancer. Asian Pacific J. Cancer Prev., 2013, 14, 1057–1060.

  • 42

    Hong, F., Li, Y., Xu, Y., et al.: Prognostic significance of serum microRNA-221 expression in human epithelial ovarian cancer. J. Int. Med. Res., 2013, 41, 64–71.

  • 43

    Guo, F., Tian, J., Lin, Y., et al.: Serum microRNA-92 expression in patients with ovarian epithelial carcinoma. J. Int. Med. Res., 2013, 41, 1456–1461.

  • 44

    Zheng, H., Zhang, L., Zhao, Y., et al.: Plasma miRNAs as diagnostic and prognostic biomarkers for ovarian cancer. PLoS One, 2013, 8, e77853.

  • 45

    Li, A., Yu, J., Kim, H., et al.: MicroRNA array analysis finds elevated serum miR-1290 accurately distinguishes patients with low-stage pancreatic cancer from healthy and disease controls. Clin. Cancer Res., 2013, 19, 3600–3610.

  • 46

    Li, S. C., Essaghir, A., Martijn, C., et al.: Global microRNA profiling of well-differentiated small intestinal neuroendocrine tumors. Mod. Pathol., 2013, 26, 685–696.

  • 47

    Butz, H., Kinga, N., Racz, K., et al.: Circulating miRNAs as biomarkers for endocrine disorders. J. Endocrinol. Invest., 2016, 39, 1–10.

  • 48

    Waguespack, S. G., Rich, T., Grubbs, E., et al.: A current review of the etiology, diagnosis, and treatment of pediatric pheochromocytoma and paraganglioma. J. Clin. Endocrinol. Metab., 2010, 95, 2023–2037.

  • 49

    Langhe, R., Norris, L., Saadeh, F. A., et al.: A novel serum microRNA panel to discriminate benign from malignant ovarian disease. Cancer Lett., 2015, 356, 628–636.

  • 50

    Meng, X., Müller, V., Milde-Langosch, K., et al.: Diagnostic and prognostic relevance of circulating exosomal miR-373, miR-200a, miR-200b and miR-200c in patients with epithelial ovarian cancer. Oncotarget, 2016, 7, 16923–16935.

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2021 0 7 4
Feb 2021 0 21 16
Mar 2021 0 6 4
Apr 2021 0 11 8
May 2021 0 10 7
Jun 2021 0 5 5
Jul 2021 0 0 0