View More View Less
  • 1 Semmelweis Egyetem, Általános Orvostudományi Kar, Budapest, Nagyvárad tér 4., 1089
  • 2 Bionika Innovációs Központ Nonprofit Kft., Budapest
  • 3 MTA–SE Lendület Örökletes Endokrin Daganatok Kutatócsoport, Budapest
Open access

Absztrakt:

Az ösztrogénhormonok fiziológiai szerepe sok tekintetben ismert. Meglehetősen kevés információ áll azonban rendelkezésre az ösztron és az ösztradiol lebontása során képződő vegyületek szerepéről a különböző, ösztrogénhatással összefüggésbe hozott kórképekben. A kutatások intenzív érdeklődésének középpontjában jelenleg a két ösztrogénhormon mellett tizenhárom extragonadális metabolit áll. A képződő metabolitok protektív vagy éppen proinflammatorikus és/vagy proonkogén hatással rendelkeznek. A szisztémás keringésben mért metabolitszintek nem mutatnak összefüggést a lokálisan megjelenő metabolitokéval, ennek a jövőben diagnosztikai jelentősége lehet. A jelen tanulmány célja a perifériás szövetekben az extragonadális metabolommal kapcsolatos irodalmi források átfogó áttekintése, valamint felhívni a figyelmet a perifériás szövetek ösztrogénhomeosztázisának szerepére, az ösztrogénmetabolom igazolt, valamint a klasszikus hormonhatásoktól eltérő biológiai aktivitására, egyes kórfolyamatokban azonosított klinikai jelentőségére. Ezek az ismeretek a lokálisan determinált kórfolyamatok megértését, korai diagnosztikáját a későbbiekben a metabolomika eszköztárával jelentősen segíthetik. Orv Hetil. 2017; 158(24): 929–937.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Lee AJ, Cai MX, Thomas PE, et al. Characterization of the oxidative metabolites of 17beta-estradiol and estrone formed by 15 selectively expressed human cytochrome P450 isoforms. Endocrinology 2003; 144: 3382–3398.

  • 2

    Tsuchiya Y, Nakajima M, Yokoi T. Cytochrome P450-mediated metabolism of estrogens and its regulation in human. Cancer Lett. 2005; 227: 115–124.

  • 3

    Simpson ER. Sources of estrogen and their importance. J Steroid Biochem Mol Biol. 2003; 86: 225–230.

  • 4

    Vásárhelyi B, Mészáros K, Karvaly G, et al. Focusing on tissue biomarkers. Estrogens as key players in the modulation of immune response and autoimmunity. [Fókuszban a szöveti biomarkerek. Az ösztrogének mint a szövetspecifikus immunválasz és autoimmunitás modulálásának kulcsszereplői.] Orv Hetil. 2015; 156: 2070–2076. [Hungarian]

  • 5

    Geisler J. Breast cancer tissue estrogens and their manipulation with aromatase inhibitors and inactivators. J Steroid Biochem Mol Biol. 2003; 86: 245–253.

  • 6

    Muir M, Romalo G, Wolf L, et al. Estrone sulfate is a major source of local estrogen formation in human bone. J Clin Endocrinol Metab. 2004; 89: 4685–4692.

  • 7

    Barakat R, Oakley O, Kim H, et al. Extra-gonadal sites of estrogen biosynthesis and function. BMP Rep. 2016; 49: 488–496.

  • 8

    Stocco C. Tissue physiology and pathology of aromatase. Steroids 2012; 77: 27–35.

  • 9

    Sasano H, Suzuki T, Nakata T, et al. New development in intracrinology of breast carcinoma. Breast Cancer 2006; 13: 129–136.

  • 10

    Falk RT, Xu X, Keefer L, et al. A liquid chromatography-mass spectrometry method for the simultaneous measurement of fifteen urinary estrogens and estrogen metabolites: assay reproducibility and inter-individual variability. Cancer Epidemiol Biomarkers Prev. 2008; 17: 3411–3418.

  • 11

    Hong CC, Tang BK, Hammond GL, et al. Cyctochrome P450 1A2 (CYP1A2) activity and risk factors for breast cancer: a cross-sectional study. Breast Cancer Res. 2004; 6: 352–365.

  • 12

    Raftogianis R, Creveling C, Weinshilboum R, et al. Estrogen metabolism by conjugation. J Natl Cancer Inst Monogr. 2000; 27: 113–124.

  • 13

    Dawling S, Roodi N, Mernaugh RL, et al. Catechol-O-methyltransferase (COMT)-mediated metabolism of catechol estrogens: comparison of wild-type and variant COMT isoforms. Cancer Res. 2001; 61: 6716–6722.

  • 14

    Jansson A, Gunnarsson C, Stal O. Proliferative responses to altered 17beta-hydroxysteroid dehydrogenase (17HSD) type 2 expression in human breast cancer cells are dependent on endogenous expression of 17HSD type 1 and the oestradiol receptors. Endocr Relat Cancer 2006; 13: 875–884.

  • 15

    Cui J, Shen Y, Li R. Estrogen synthesis and signaling pathways during ageing: from periphery to brain. Trends Mol Med. 2013; 19: 197–209.

  • 16

    Azcoitia I, Yague JG, Garcia-Segura LM. Estradiol synthesis within the human brain. Neuroscience 2011; 191: 139–147.

  • 17

    Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharm Ther. 2013; 138: 103–141.

  • 18

    Sterling KM Jr, Cutroneo KR. Constitutive and inducible expression of cytochromes P4501A (CYP1A1 and CYP1A2) in normal prostate and prostate cancer cells. J Cell Biochem. 2004; 91: 423–429.

  • 19

    Yager JD, Davidson NE. Estrogen carcinogenesis in breast cancer. N Engl J Med. 2006; 354: 270–282.

  • 20

    Liu J, Sridhar J, Foroozesh M. Cytochrome P450 family 1 inhibitors and structure-activity relationships. Molecules 2013; 18: 14470–14495.

  • 21

    Bruno RD, Njar VC. Targeting cytochrome P450 enzimes: a new approach in anti-cancer drug development. Bioorg Med Chem. 2007; 15: 5047–5060.

  • 22

    Zhang CZ, Wang SX, Zhang Y, et al. In vitro estrogenic activities of Chinese medicinal plants traditionally used for the management of menopausal symptoms. J Etnopharmacol. 2005; 98: 295–300.

  • 23

    Dave H, Ledwani L. A review on anthraquinones isolated from Cassia species and their applications. Indian J Nat Prod Resources 2012; 3: 291–319.

  • 24

    Yager JD. Mechanisms of estrogen carcinogenesis: The role of E2/E1-quinone metabolites suggests new approaches to preventive intervention – a review. Steroids 2015, 99(Pt A): 56–60.

  • 25

    An KC. Selective estrogen receptor modulators. Asian Spine J. 2016; 10: 787–791.

  • 26

    Zhu BT, Conney AH. Functional role of estrogen metabolism in target cells: review and perspectives. Carcinogenesis 1998; 19: 1–27.

  • 27

    Zhu BT, Han GZ, Shim JY, et al. Quantitative structure-activity relationship of various endogenous estrogen metabolites for human estrogen receptor alpha and beta subtypes: insights into the structural determinants favoring a differential subtype binding. Endocrinology 2006; 147: 4132–4150.

  • 28

    Simpson E, Rubin G, Clyne C, et al. Local estrogen biosynthesis in males and females. Endocr Relat Cancer 1999; 6: 131–137.

  • 29

    Liehr JG, Ricci MJ. 4-hydroxylation of estrogens as marker of human mammary tumors. Proc Natl Acad Sci USA. 1996; 93: 3294–3296.

  • 30

    Zahid M, Saeed M, Lu F, et al. Inhibition of catechol-O-methyl transferase increases estrogen-DNA adduct formation. Free Radic Biol Med. 2007; 43: 1534–1540.

  • 31

    Lábas A, Krámos B, Oláh J. Combined docking and quantum chemical study on CYP-mediated metabolism of estrogens in man. Chem Res Toxicol. 2017; 30: 583–594.

  • 32

    Sowers MR, McConnell D, Jannausch M, et al. Estradiol and its metabolites and their association with knee osteoarthritis. Arthritis Rheumatism 2006; 54: 2481–2487.

  • 33

    Cutolo M, Brizzolara R, Atzeni F, et al. The immunomodulatory effects of estrogens: clinical relevance in immun-mediated rheumatic disseases. Ann NY Acad Sci. 2010, 1193: 36–42.

  • 34

    Savolainen-Peltonen H, Vihma V, Leidenius M, et al. Breast adipose tissue estrogen metabolism in postmenopausal women with or without breast cancer. J Clin Endocrinol Metab. 2014; 99: E2661–E2667.

  • 35

    Fuhrman BJ, Schairer C, Gail MH, et al. Estrogen metabolism and risk of breast cancer in postmenopausal women. J Natl Cancer Inst. 2012; 104: 326–339.

  • 36

    Tam A, Morrish D, Wadsworth S, et al. The role of female hormones on lung function in chronic lung diseases. BMC Womens Health 2011; 24: 2–9.

  • 37

    Peng J, Xu X, Mace BE, et al. Estrogen metabolism within the lung and its modulation by tobacco smoke. Carcinogenesis 2013; 34: 909–915.

  • 38

    Solum EJ, Akselsen ØW, Vik A, et al. Synthesis and pharmacological effects of the anti-cancer agent 2-methoxyestradiol. Curr Pharm Des. 2015; 21: 5453–5466.

  • 39

    Chatterton RT Jr, Geiger AS, Gann PH, et al. Formation of estrone and estradiol from estrone sulfate by normal breast parenchymal tissue. J Steroid Biochem Mol Biol. 2003; 86: 159–166.

  • 40

    Falk RT, Brinton LA, Dorgan JF, et al. Relationship of serum estrogens and estrogen metabolites to postmenopausal breast cancer risk: a nested case-control study. Breast Cancer Res. 2013; 15: R34.

  • 41

    Westerlind KC, Gibson KJ, Evans GL, et al. The catechol estrogen, 4-hydroxyestrone, has tissue-specific estrogen actions. J Endocrinol. 2000; 167: 281–287.

  • 42

    Eliassen AH, Missmer SA, Tworoger SS, et al. Circulating 2-hydroxy and 16alpha-hydroxy estrone levels and risk of breast cancer among postmenopausal women. Cancer Epidemiol Biomarkers Prev. 2008; 17: 2029–2035.

  • 43

    Eliassen AH, Ziegler RG, Rosner B, et al. Reproducibility of fifteen urinary estrogens and estrogen metabolites over a 2- to 3-year period in premenopausal women. Cancer Epidemiol Biomarkers Prev. 2009; 18: 2860–2868.

  • 44

    Weidler C, Harle P, Schedel J, et al. Patients with rheumatoid arthritis and systemic lupus erythematosus have increased renal excretion of mitogenic estrogens in relation to endogenous antiestrogens. J Rheumatol. 2004; 31: 489–494.

  • 45

    Ngo, ST, Steyn FJ, McCombe PA. Gender differences in autoimmune disease. Front Neuroendocrinol. 2014; 35: 347–369.

  • 46

    Schmidt M, Weidler C, Naumann H, et al. Androgen conversion in osteoarthritis and rheumatoid arthritis synoviocytes – androstenedione and testosterone inhibit estrogen formation and favor production of more potent 5-alpha-reduced androgens. Arthritis Res Ther. 2005; 7: R938–R948.

  • 47

    Cutolo M, Sulli A, Capellino S, et al. Sex hormones influence on the immune system: basic and clinical aspects in autoimmunity. Lupus 2004; 13: 635–638.

  • 48

    Schmidt M, Hartung R, Capellino S, et al. Estrone/17beta-estradiol conversion to, and tumor necrosis factor inhibition by, estrogen metabolites in synovial cells of patients with rheumatoid arthritis and patients with osteoarthritis. Arthritis Rheum. 2009; 60: 2913–2922.

  • 49

    Capellino S, Montagna P, Villaggio B, et al. Hydroxylated estrogen metabolites influence the proliferation of cultured human monocytes: possible role in synovial tissue hyperplasia. Clin Exp Rheumatol. 2008; 26: 903–909.

  • 50

    Capellino S, Straub RH, Cutolo M. Aromatase and regulation of the estrogen-to-androgen ratio in synovial tissue inflammation: common pathway in both sexes. Ann NY Acad Sci. 2014; 1317: 24–31.

  • 51

    Khan D, Ansar Ahmed S. The immune system is a natural target for estrogen action: opposing effects of estrogen in two prototypical autoimmune diseases. Front Immunol. 2015; 6: 635.

  • 52

    Swaneck GE, Fishman J. Covalent binding of the endogenous estrogen 16alpha-hydroxyestrone to estradiol receptor in human breast cancer cells: characterization and intranuclear localization. Proc Natl Acad Sci USA. 1988; 85: 7831–7835.

  • 53

    Pellino G, Sciaudone G, Patturelli M, et al. Relatives of Crohn’s disease patients and breast cancer: an overlooked condition. Int J Surg. 2014; 12(Suppl 1): 156–158.

  • 54

    Tian G, Liang JN, Wang ZY, et al. Breast cancer risk in rheumatoid arthritis: an update meta-analysis. BioMed Res Int. 2014; 2014: 453012.

  • 55

    Nielsen NM, Rostgaard K, Rasmussen S, et al. Cancer risk among patients with multiple sclerosis: a population-based register study. Int J Cancer 2006; 118: 979–984.

  • 56

    Michaud JE, Billups KL, Partin AW. Testosterone and prostate cancer: an evidence-based review of pathogenesis and oncologic risk. Ther Adv Urol. 2015; 7: 378–387.

  • 57

    Moon JY, Choi MH, Kim J. Metabolic profiling of cholesterol and sex steroid hormones to monitor urological diseases. Endocr Relat Cancer 2016, 23: R455–R467.

  • 58

    Ellem SJ, Risbridger GP. Aromatase and prostate cancer. Minerva Endocrinol. 2006; 31: 1–12.

  • 59

    Mosli HA, Al-Abd AM, El-Shaer MA, et al. Local inflammation influences oestrogen metabolism in prostatic tissue. BJU Int. 2012, 110: 274–282.

  • 60

    Habib CN, Al-Abd AM, Tolba MF, et al. Leptin influences estrogen metabolism and accelerates prostate cell proliferation. Life Sci. 2015; 121: 10–15.

  • 61

    Kosti O, Xu X, Veenstra TD, et al. Urinary estrogen metabolites and prostate cancer risk: a pilot study. Prostate 2011; 71: 507–516.

  • 62

    Soldin SJ, Soldin OP. Steroid hormone analysis by tandem mass spectrometry. Clin Chem. 2009; 55: 1061–1066.

  • 63

    Hsing AW, Stanczyk FZ, Bélanger A, et al. Reproducibility of serum sex steroid assays in men by RIA and mass spectrometry. Cancer Epidemiol Biomarkers Prev. 2007; 16: 1004–1008.

  • 64

    Faupel-Badger JM, Fuhrman BJ, Xu X, et al. Comparison of liquid chromatography-mass spectrometry, radioimmunoassay, and enzyme-linked immunosorbent assay methods for measurement of urinary estrogens. Cancer Epidemiol Biomarkers Prev. 2010; 19: 292–300.

  • 65

    Kushnir MM, Rockwood AL, Roberts WL, et al. Liquid chromatography-tandem mass spectrometry for analysis of steroids in clinical laboratories. Clin Biochem. 2011; 44: 77–88.

  • 66

    Fuhrman BJ, Xu X, Falk RT, et al. Assay reproducibility and interindividual variation for 15 serum estrogens and estrogen metabolites measured by liquid chromatography-tandem mass spectrometry. Cancer Epidemiol Biomarkers Prev. 2014, 23: 2649–2657.

  • 67

    Falk RT, Xu X, Keefer L, et al. A liquid chromatography-mass spectrometry method for the simultaneous measurement of fifteen urinary estrogens and estrogen metabolites: assay reproducibility and inter-individual variability. Cancer Epidemiol Biomarkers Prev. 2008; 17: 3411–3418.