View More View Less
  • 1 Semmelweis Egyetem, Általános Orvostudományi Kar, Budapest, Pf. 370, 1445

Absztrakt:

Az endokrin diszruptorok a környezetből az állati (emberi) szervezetbe jutó olyan természetes vagy mesterséges molekulák, amelyek hormonreceptorokhoz kapcsolódva serkentik vagy gátolják adott sejtek tevékenységét, hormonok vagy receptorok előállítását, illetve transzportját. Ha kapcsolódásuk valamely kritikus periódusban történik, hibás hormonális imprintinget hoznak létre életre szóló következményekkel, mint hormonbefolyásolt sejtműködések megváltozása, betegségekre való hajlam manifesztálódása vagy betegségek megjelenése, ezért orvosi-egészségügyi jelentőségük van. Az endokrin diszruptorok száma nagy és éppúgy, mint felhasználásra kerülő mennyiségük, növekszik, ezáltal számos, felnőttkorban megjelenő kórkép (például daganat) visszavezethető perinatalis kori endokrin diszruptorártalmakra. Tartós hatásuk alapvető emberi jellegzetességek (például menarche időpontja) megváltozásához vezet. Az A- és D-vitamin is hormon (exohormon) és kívülről bejutva a szervezetbe endokrin diszruptorok lehetnek. Az endokrin diszruptorok által kiváltott imprinting az utódgenerációkra epigenetikusan átadódik, így befolyásolhatja az utódok gyógyszerérzékenységét is. Ha az epigenetikus öröklődés tartóssá válik, annak humánevolúciós jelentősége is lehet. Orv Hetil. 2017, 158(37): 1443–1451.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Csaba G. Phylogeny and ontogeny of hormone receptors: the selection theory of receptor formation and hormonal imprinting. Biol Rev Camb Biol Soc. 1980; 55: 47–63.

  • 2

    Csaba G. Hormonal imprinting: its role during the evolution and development of hormones and receptors. Cell Biol Int. 2000; 24: 407–414.

  • 3

    Csaba G. The present state in the phylogeny and ontogeny of hormone receptors. Horm Metab Res. 1984; 16: 329–335.

  • 4

    Csaba G. Transgenerational effects of perinatal hormonal imprinting. In: Tollefsbol T. (ed.) Transgenerational epigenetics. Academic Press, New York, 2014; pp. 255–264.

  • 5

    Karabélyos C, Csaba G. Effect of digoxin imprinting in adolescence on the sexual behavior of adult rats. Acta Physiol Hung. 1999; 86: 23–28.

  • 6

    Neri A, Aygen M, Zukerman Z, et al. Subjective assesment of sexual dysfunction of patients on long-term administration of digoxin. Arch Sex Behav. 1980; 9: 343–347.

  • 7

    Langston N. Rachel Carson’s legacy: Endocrine disrupting chemicals and gender concerns. GAIA 2012; 21: 225–229.

  • 8

    Marty MS, Carney EW, Rowlands JC. Endocrine disruption: historical perspectives and its impact on the future of toxicology testing. Toxicol Sci. 2011; 120(Suppl 1): S93–S108.

  • 9

    WHO European Commission. http//ec.europa eu/environment/chemicals/endocrine definitions/endodis-an.htm

  • 10

    Canadian Centre for Occupational Health and Safety. https//www.coohs.ca/oshanswers/chemicals/endocrine.html;

  • 11

    Dudutz G, Kincses-Ajtay M, Csép K. More important endocrine disruptors and their effects on living organisms. [Fontosabb endokrin diszruptor vegyületek és az élő szervezetekre kifejtett hatásaik.] Orvostud Ért. 2009; 82: 156–164. [Hungarian]

  • 12

    Munteanu C, Hoteteu M. Estrogenic compounds – endocrine disruptors. Balneo-Research J. 2011; 2: 115–118.

  • 13

    Mangelsdorf DJ, Thummel C, Beato M, et al. The nuclear receptor superfamily: the second decade. Cell 1995; 83: 835–839.

  • 14

    Mnif W, Hadi Hassine AI, Bouaziz A, et al. Effect of endocrine disruptor pesticides: A review. Int J Environ Res Public Health 2011; 8: 2265–2303.

  • 15

    Csaba G, Karabélyos C. Pubertal benzpyrene exposition decreases durably the sexual activity of the adult male and female rats. Horm Metab Res. 1995; 27: 279–282.

  • 16

    Csaba G, Inczefi-Gonda Á. Molecules acting on receptor level at weaning, durably influence liver glucocorticoid receptors. Acta Physiol Hung. 2005; 92: 33–38.

  • 17

    Tekes K, Hantos M, Gyenge M, et al. Prolonged effect of stress at weaning on the brain serotonin metabolism and sexuality of female rats. Horm Metab Res. 2006; 38: 799–802.

  • 18

    Nugent BM, Tobet SA, Lara HE, et al. Hormonal programming across the lifespan. Horm Metab Res. 2012; 44: 577–586.

  • 19

    Gaál A, Csaba G. Testosterone and progesterone level alterations in the adult rat after retinoid (retinol or retinoic acid) treatment in neonatal and adolescent age. Horm Metab Res. 1998; 30: 487–489.

  • 20

    Csaba G, Inczefi-Gonda Á. Effect of vitamin D3 treatment in the neonatal or adolescent age (hormonal imprinting) on the thymic glucocorticoid receptor of the adult male rat. Horm Res. 1990; 51: 280–283.

  • 21

    Goetz F, Mitroskhin A, Patchev AV, et al. Significance of neonatal steroid imprinting and of peripubertal growth hormone excess for the development of prostatic hyperplasia in the rat. Endocrine Abstracts 2006; 11: 555.

  • 22

    Akingbemi BT, Hardy MP. Oestrogenic and antiandrogenic chemicals in the environment: effects on male reproductive health. Acta Med. 2001; 33: 391–403.

  • 23

    Crews F, He J, Hodge C. Adolescent cortical development. A critical period of vulnerability for addiction. Pharmacol Biochem Behav. 2007; 86: 189–199.

  • 24

    Hampl R, Kubátová J, Stárka L. Steroids and endocrine disruptors – History, recent state of art and open questions. J Steroid Biochem Mol Biol. 2016; 155: 217–223.

  • 25

    Csaba G, Karabélyos C. Effect of single neonatal treatment with the soy bean phytosteroid, genistein on the sexual behavior of adult rats. Acta Physiol Hung. 2002; 89: 463–470.

  • 26

    Patisaul HB, Jefferson W. The pros and cons of phytoestrogens. Front Neuroendocrinol. 2010; 31: 400–419.

  • 27

    Rietjens IM, Louisse J, Beekmann K. The potential health effects of dietary phytoestrogens. Br J Pharmacol. 2017; 174: 1263–1280.

  • 28

    Patisaul HB, Adewale HB. Long-term effects of endocrine disruptors on reproductive physiology and behavior. Front Behav Neurosci. 2009; 29: 10.

  • 29

    Marques-Pinto A, Carvalho D. Human infertility, are endocrine disruptors to blame? Endocr Connect. 2013; 2: R15–R29.

  • 30

    Aksglaede L, Juul A, Leffers H, et al. The sensitivity of the child to sex steroids: possible impact of exogenous estrogens. Hum Reprod Update 2006; 12: 341–349.

  • 31

    Li D, Zhou Z, Qing, D, et al. Occupational exposure to bisphenol-A (BPA) and the risk of self-reported male sexual dysfunction. Hum Reprod. 2009; 25: 519–527.

  • 32

    Hainer R. Study links BPA in plastics to erectile dysfunction. Health.com, November 11, 2009. Updated 2017 GMT (0417 HKT).

  • 33

    Fratrić I, Živković D, Vukmirović S. Human exposure to endocrine disrupting chemicals as a prenatal risk factor for cryptorchidism. Pediatr Croat. 2015; 59: 19–24.

  • 34

    Virtanen HE, Adamsson A. Cryptorchidism and endocrine disrupting chemicals. Mol Cell Endocrinol. 2012; 355: 208–220.

  • 35

    Bay K, Andersson AM. Human testicular insulin-like factor 3: in relation to development, reproductive hormones and andrological disorders. Int J Androl. 2011; 34: 97–109.

  • 36

    Balthazart J. Minireview: Hormones and human sexual orientation. Endocrinology 2011; 152: 2937–2947.

  • 37

    Johnson C. Endocrine disruptors and the transgendered. Washington Free Press, 2002 March.

  • 38

    Sonnenschein C, Soto AM. An updated review of environmental estrogen and androgen mimics and antagonists. J Steroid Biochem Mol Biol. 1998; 65: 143–150.

  • 39

    Csaba G, Karabélyos C, Dalló J. Fetal and neonatal action of a polycyclic hydrocarbon (benzpyrene) or a synthetic steroid hormone (allylestrenol) as reflected by the sexual behaviour of adult rats. J Dev Physiol. 1993; 19: 67–70.

  • 40

    Csaba G, Karabélyos C. Transgenerational effect of a single neonatal benzpyrene treatment (imprinting) on the sexual behavior of adult female rats. Hum Exp Toxicol. 1997; 16: 553–556.

  • 41

    Boas M, Feldt-Rasmussen U, Main KM. Thyroid effects of endocrine disrupting chemicals. Mol Cell Endocrinol. 2012; 355: 240–248.

  • 42

    Boas M, Main KM, Feldt-Rasmussen U. Environmental chemicals and thyroid function: an update. Curr Opin Endocrinol Diabetes Obes. 2009; 16: 385–391.

  • 43

    Duntas LH. Chemical contamination and the thyroid. Endocrine 2015; 48: 53–64.

  • 44

    Gutleb AC, Cambier S, Serchi T. Impact of endocrine disruptors on the thyroid hormone system. Horm Res Paediatr. 2016; 86: 271–278.

  • 45

    Boas M, Feldt-Rasmussen U, Skakkebaek NE, et al. Environmental chemicals and thyroid function. Eur J Endocrinol. 2006; 154: 599–611.

  • 46

    Schmutzler C, Gotthardt I, Hofmann PJ, et al. Endocrine disruptors and the thyroid gland – a combined in vitro and in vivo analysis of potential new biomarkers. Environ Health Perspect. 2007; 115(Suppl 1): 77–83.

  • 47

    Takahama K, Shirasaki T. Endocrine disruptors and brain estrogen receptors: the current state of behavioral, neurochemical, and molecular biological studies. Nihon Shinkei Seishin Yakurigaku Zasshi 2001; 21: 103–111.

  • 48

    Palanza P, Gioiosa L, vom Saal FS, et al. Effects of developmental exposure to bisphenol A on brain and behavior in mice. Environ Res. 2008; 108: 150–157.

  • 49

    Van der Akker EL, Weisglas-Kuperus N. Sexual differentiation of the human brain. Hormonal controls and effects of endocrine disruptors. In: Lewis M, Kestler L. (eds.) Gender differences in prenatal substance exposure. American Psychological Association, Washington, DC, 2012; pp. 207–215.

  • 50

    Evans SF, Kobrosly RW, Barrett ES, et al. Prenatal bisphenol An exposure and maternally reported behavior in boys and girls. Neurotoxicology 2014; 45: 91–99.

  • 51

    Mustieles V, Pérez-Lobato R, Olea N, et al. Bisphenol A: Human exposure and neurobehavior. Neurotoxicology 2015; 49: 174–184.

  • 52

    Csaba G, Tekes K. Is the brain hormonally imprintable? Brain Dev. 2005; 27: 465–471.

  • 53

    Sisk CL, Zehr JL. Pubertal hormones organize the adolescent brain and behavior. Front Neuroendocrinol. 2005; 26: 163–174.

  • 54

    Chalubinski M, Kowalski ML. Endocrine disrupters – potential modulators of the immune system and allergic response. TOC 2006; 61: 1326–1335.

  • 55

    Rogers JA, Metz L, Yong VW. Review: Endocrine disrupting chemicals and immune responses: a focus on bisphenol-A and its potential mechanisms. Mol Immunol. 2013; 53: 421–430.

  • 56

    Kuo CH, Yang SN, Kuo PL, et al. Immunomodularory effects of environmental endocrine disrupting chemicals. Kaohsiung J Med Sci. 2012; 28(Suppl): S37–S42.

  • 57

    Csaba G. Hormonal imprinting: phylogeny, ontogeny, diseases and possible role in present-day human evolution. Cell Biochem Funct. 2008; 26: 1–10.

  • 58

    Guerreiro CB, Horálek J, de Leeuw F, et al. Benzo(a)pyrene in Europe: Ambient air concentrations, population exposure and health effects. Environ Pollut. 2016; 214: 657–667.

  • 59

    Jones DC, Miller GW. The effects of environmental neurotoxicants on the dopaminergic system. A possible role in drug addiction. Biochem Pharmacol. 2008; 76: 569–581.

  • 60

    Chevalier N, Fénichel P. Endocrine disruptors: A missing link in the pandemy of type 2 diabetes and obesity. Presse Med. 2016; 45: 88–97.

  • 61

    De Cock M, Maas YG, van de Bor M. Does perinatal exposure to endocrine disruptors induce autism spectrum and attention deficit hyperactivity disorders? Review. Acta Paediatr. 2012; 101: 811–818.

  • 62

    Dörner G. Environment and gene-dependent human ontogenesis, sociogenesis and phylogenesis (eco-geno-onto-socio-phylogenesis). Neuro Endocrinol Lett. 2004; 25: 164–168.

  • 63

    Holmang A. Perinatal origin of adult disease. Scand Cardiovasc. 2001; 35: 178–185.

  • 64

    Tchernitchin AN, Tchernitchin NN, Mena MA, et al. Imprinting: perinatal exposures cause the development of diseases during the adult age. Acta Biol Hung. 1999; 50: 425–440.

  • 65

    Csaba G. The faulty perinatal hormonal imprinting as functional teratogen. Curr Pediatr Rev. 2016; 12: 222–229.

  • 66

    Heindel JJ, Skalla LA, Joubert BR, et al. Review of developmental origins of health and disease publications in environmental epidemiology. Reprod Toxicol. 2017; 68: 34–48.

  • 67

    Csaba G. Immunoendocrinology: faulty hormonal imprinting in the immune system. Acta Microbiol Hung. 2014; 61: 89–106.

  • 68

    Anway MD, Cupp AS, Uzumcu M, et al. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 2005; 308: 1466–1469.

  • 69

    Csaba G, Inczefi-Gonda Á. Direct and transgenerational effect of benzpyrene treatment at adolescent age on the uterine estrogen receptor and thymic glucocorticoid receptor of the adult rat. Acta Physiol Hung. 1999; 86: 29–36.

  • 70

    Csaba G. The biological basis and clinical significance of hormonal imprinting, an epigenetic process. Clin Epigenetics 2011; 2: 187–196.

  • 71

    Skinner MK. Endocrine disruptor induction of epigenetic transgenerational inheritance of disease. Mol Cell Endocrinol. 2014; 398: 4–12.

  • 72

    Xin F, Susiarjo M, Bartolomei MS. Multigenerational and transgenerational effects of endocrine disrupting chemicals: A role for altered epigenetic regulation? Semin Cell Dev Biol. 2015; 43: 66–75.

  • 73

    Kőhidai L, Lajkó E, Pállinger É, et al. Verification of epigenetic inheritance in a unicellular model system: multigenerational effects of hormonal imprinting. Cell Biol Int. 2012; 36: 951–959.

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2020 0 23 26
Nov 2020 0 54 45
Dec 2020 0 15 24
Jan 2021 0 24 25
Feb 2021 0 18 34
Mar 2021 0 46 52
Apr 2021 0 9 13