View More View Less
  • 1 Szegedi Tudományegyetem, Általános Orvostudományi Kar, Szeged, Semmelweis u. 8., 6725
  • 2 MTA–SE Lendület Molekuláris Onkohematológia Kutatócsoport, Semmelweis Egyetem, Budapest

Absztrakt:

A krónikus lymphocytás leukaemia (CLL) heterogén klinikai lefolyású lymphoproliferativ betegség, amelyben számos klinikai és molekuláris prognosztikai marker nyújt segítséget a leghatékonyabb terápia megválasztásában. Eddig a TP53-defektus bizonyult kulcsfontosságú prognosztikai és prediktív faktornak, amely befolyásolja a terápiás döntést, különösen az új célzott kezelések érájában. A tünetmentes, korai stádiumú betegek nem igényelnek kezelést, követésük javasolt (úgynevezett „watch and wait”). Első vonalban a standard rizikójú CLL-es betegek többségében a standard kezelés továbbra is a kemo-immuno terápia. Az új orálisan alkalmazható kis molekulájú gyógyszereknek, mint a kinázinhibitorok (KI) és a Bcl-2-gátlók (ibrutinib, idelalisib és venetoclax), elsősorban relabáló/refrakter CLL kezelésében van helyük, ez alól kivétel az ibrutinib-monoterápia, amely a nagy rizikójú (TP53-defektust hordozó) betegek első vonalbeli kezelésére is javasolt. A nem túl távoli jövőben az új generációs szekvenálás diagnosztikába történő integrálása támogathatja majd a CLL-es betegek személyre szabott ellátását és az optimális kezelési stratégia megválasztását. Orv Hetil. 2017; 158(41): 1620–1629.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Hallek M, Cheson BD, Catovsky D, et al., International Workshop on Chronic Lymphocytic Leukemia. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute–Working Group 1996 guidelines. Blood 2008; 111: 5446–5456.

  • 2

    Wiestner A. Emerging role of kinase-targeted strategies in chronic lymphocytic leukemia. Blood 2012; 120: 4684–4691.

  • 3

    Dal Bo M, Bomben R, Zucchetto A, et al. Microenvironmental interactions in chronic lymphocytic leukemia: hints for pathogenesis and identification of targets for rational therapy. Curr Pharm Des. 2012; 18: 3323–3334.

  • 4

    Hallek M. Chronic lymphocytic leukemia: 2015 update on diagnosis, risk stratification, and treatment. Am J Hemato. 2015; 90: 446–460.

  • 5

    International CLL-IPI Working Group. An international prognostic index for patients with chronic lymphocytic leukemia (CLL-IPI): a meta-analysis of individual patient data. Lancet Oncol. 2016; 17: 779–790.

  • 6

    Pratt G, Thomas P, Marden N, et al. Evaluation of serum markers in the LRF CLL4 trial: β2-microglobulin but not serum free light chains, is an independent marker of overall survival. Leuk Lymph. 2016; 57: 2342–2350.

  • 7

    Rassenti LZ, Huynh L, Toy TL, et al. ZAP-70 compared with immunoglobulin heavy-chain gene mutation status as a predictor of disease progression in chronic lymphocytic leukemia. N Engl J Med. 2004; 351: 893–901.

  • 8

    Pflug N, Bahlo J, Shanafelt TD, et al. Development of a comprehensive prognostic index for patients with chronic lymphocytic leukemia. Blood 2014; 124: 49–62.

  • 9

    Döhner H, Stilgenbauer S, Benner A, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000; 343: 1910–1916.

  • 10

    Lazarian G, Tausch E, Eclache V, et al. TP53 mutations are early events in chronic lymphocytic leukemia disease progression and precede evolution to complex karyotypes. Int J Can. 2016; 139: 1759–1763.

  • 11

    Fabbri G, Rasi S, Rossi D, et al. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J Exp Med. 2011; 208: 1389–1401.

  • 12

    Puente XS, Pinyol M, Quesada V, et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 2011; 475: 101–105.

  • 13

    Fabbri G, Dalla-Favera R. The molecular pathogenesis of chronic lymphocytic leukaemia. Nat Rev Can. 2016; 16: 145–162.

  • 14

    Rossi D, Rasi S, Spina V, et al. Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood 2013; 121: 1403–1412. [Epub 2012 Dec 13]

  • 15

    Eichhorst B, Robak T, Montserrat E, et al. Chronic lymphocytic leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015; 26(Suppl 5): v78–v84.

  • 16

    Oscier D, Dearden C, Eren E, et al. Guidelines on the diagnosis, investigation and management of chronic lymphocytic leukaemia. Br J Haematol. 2012; 159: 541–564.

  • 17

    Zelenetz AD, Gordon LI, Wierda WG, et al. Chronic lymphocytic leukemia/small lymphocytic lymphoma, version 1.2015. J Natl Compr Canc Netw. 2015; 13: 326–362.

  • 18

    Rossi D, Gerber B, Stüssi G. Predictive and prognostic biomarkers in the era of new targeted therapies for chronic lymphocytic leukemia. Leuk Lymphoma 2017; 58: 1548–1560.

  • 19

    Zenz T, Eichhorst B, Busch R, et al. TP53 mutation and survival in chronic lymphocytic leukemia. J Clin Oncol. 2010; 28: 4473–4479.

  • 20

    Stilgenbauer S, Schnaiter A, Paschka P, et al. Gene mutations and treatment outcome in chronic lymphocytic leukemia: results from the CLL8 trial. Blood 2014; 123: 3247–3254.

  • 21

    Dicker F, Herholz H, Schnittger S, et al. The detection of TP53 mutations in chronic lymphocytic leukemia independently predicts rapid disease progression and is highly correlated with a complex aberrant karyotype. Leukemia 2009; 23: 117–124.

  • 22

    Stilgenbauer S, Eichhorst B, Schetelig J, et al. Venetoclax in relapsed or refractory chronic lymphocytic leukaemia with 17p deletion: a multicentre, open-label, phase 2 study. Lancet Oncol. 2016; 17: 768–778.

  • 23

    Sharman JP, Coutre SE, Furman RR, et al. Second interim analysis of a phase 3 study of idelalisib (ZYDELIG®) plus rituximab (R) for relapsed chronic lymphocytic leukemia (CLL): Efficacy analysis in patient subpopulations with del(17p) and other adverse prognostic factors. Blood 2014; 124: 330.

  • 24

    Brown JR, Hillmen P, O’Brien S, et al. Extended follow-up and impact of high-risk prognostic factors from the phase 3 RESONATE study in patients with previously treated CLL/SLL. Leukemia 2017 July 21. [Epub ahead of print]

    • Crossref
    • Export Citation
  • 25

    Fésüs V, Marosvári D, Kajtár B, et al. TP53 mutation analysis in chronic lymphocytic leukaemia. [A TP53-mutáció-analízis jelentősége krónikus lymphocytás leukaemiában.] Orv Hetil. 2017; 158: 220–228. [Hungarian]

  • 26

    Pospisilova S, Gonzalez D, Malcikova J, et al. ERIC recommendations on TP53 mutation analysis in chronic lymphocytic leukemia. Leukemia 2012; 26: 1458–1461.

  • 27

    Chigrinova E, Rinaldi A, Kwee I, et al. Two main genetic pathways lead to the transformation of chronic lymphocytic leukemia to Richter syndrome. Blood 2013; 122: 2673–2682.

  • 28

    Zenz T, Habe S, Denzel T, et al. Detailed analysis of p53 pathway defects in fludarabine-refractory chronic lymphocytic leukemia (CLL): dissecting the contribution of 17p deletion, TP53 mutation, p53-p21 dysfunction, and miR34a in a prospective clinical trial. Blood 2009; 114: 2589–2597.

  • 29

    Nadeu F, Delgado J, Royo C, et al. Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1, and ATM mutations in chronic lymphocytic leukemia. Blood 2016; 127: 2122–2130.

  • 30

    Rosenquist R, Ghia P, Hadzidimitriou A, et al. Immunoglobulin gene sequence analysis in chronic lymphocytic leukemia: updated ERIC recommendations. Leukemia 2017; 31: 1477–1481.

  • 31

    Crombie J, Davids MS. IGHV mutational status testing in chronic lymphocytic leukemia. Am J Hematol. 2017 Jun 7. [Epub ahead of print]

    • Crossref
    • Export Citation
  • 32

    Tausch E, Mertens D, Stilgenbauer S. Genomic features: impact on pathogenesis and treatment of chronic lymphocytic leukemia. Oncol Res Treat. 2016; 39: 34–40.

  • 33

    Ahn IE, Underbayev C, Albitar A, et al. Clonal evolution leading to ibrutinib resistance in chronic lymphocytic leukemia. Blood 2017; 129: 1469–1479.

  • 34

    Maddocks KJ, Ruppert AS, Lozanski G, et al. Etiology of ibrutinib therapy discontinuation and outcomes in patients with chronic lymphocytic leukemia. JAMA Oncol. 2015; 1: 80–87.

  • 35

    Farooqui MZ, Valdez J, Martyr S, et al. Ibrutinib for previously untreated and relapsed or refractory chronic lymphocytic leukaemia with TP53 aberrations: a phase 2, single-arm trial. Lancet Oncol. 2015; 16: 169–176.

  • 36

    Byrd JC, Furman RR, Coutre SE, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013; 369: 32–42.

  • 37

    Byrd JC, Furman RR, Coutre SE, et al. Three-year follow-up of treatment-naïve and previously treated patients with CLL and SLL receiving single-agent ibrutinib. Blood 2015; 125: 2497–2506.

  • 38

    Furman RR, Sharman JP, Coutre SE, et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med. 2014; 370: 997–1007.

  • 39

    Flinn I, Patel M, Kahl BS, et al. Preliminary safety and efficacy of IPI-145, a potent inhibitor of phosphoinositide-3-kinase-δ, γ in patients with chronic lymphocytic leukemia. Blood 2013; 122: 677.

  • 40

    Souers AJ, Leverson JD, Boghaert ER, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013; 19: 201–208.

  • 41

    Tam CS, O’Brien S, Wierd W, et al. Long-term results of the fludarabine, cyclophosphamide, and rituximab regimen as initial therapy of chronic lymphocytic leukemia. Blood 2008; 112: 975–980.

  • 42

    Rossi D, Terzi-di-Bergamo L, De Paoli L, et al. Molecular prediction of durable remission after first-line fludarabine-cyclophosphamide-rituximab in chronic lymphocytic leukemia. Blood 2015; 126: 1921–1924.

  • 43

    Fischer K, Bahlo J, Fink AM, et al. Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: updated results of the CLL8 trial. Blood 2016; 127: 208–215.

  • 44

    Eichhorst B, Fink AM, Bahlo J, et al. First-line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukemia (CLL10): an international, open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol. 2016; 17: 928–942.

  • 45

    Hillmen P, Gribben JG, Follows GA, et al. Rituximab plus chlorambucil as first-line treatment for chronic lymphocytic leukemia: final analysis of an open-label phase II study. J Clin Oncol. 2014; 32: 1236–1241.

  • 46

    Hillmen P, Robak T, Janssens A, et al., for the COMPLEMENT 1 Study Investigators. Chlorambucil plus ofatumumab versus clorambucil alone in previously untreated patients with chronic lymphocytic leukemia (COMPLEMENT 1): a randomised, multicentre, open-label phase 3 trial. Lancet 2015; 385: 1873–1883.

  • 47

    Goede V, Fischer K, Busch R, et al. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med. 2014; 370: 1101–1110.

  • 48

    O’Brien SM, Byrd JC, Hillmen P, et al. Outcomes with ibrutinib by line of therapy in patients with CLL: analyses from phase III data. J Clin Oncol. 2016; 34(Suppl): 7520.

  • 49

    Mato A, Nabhan C, Barr PM, et al. Favorable outcomes in CLL pts with alternate kinase inhibitors following ibrutinib or idelalisib discontinuation: results from a large multi-centre study. Blood 2015; 126: 719.

  • 50

    Ma S, Brander DM, Seymour JF, et al. Deep and durable responses following venetoclax (ABT-199/GDC-0199) combined with rituximab in patients with relapsed/refractory chronic lymphocytic leukemia: results from a phase 1b study [abstract]. Blood 2015; 126: 830.

  • 51

    Barrientos JC. Sequencing of chronic lymphocytic leukemia therapies. Hematology Am Soc Hematol Educ Program 2016; 2016: 128–136.