View More View Less
  • 1 Semmelweis Egyetem, Általános Orvostudományi Kar, Budapest, Szentkirályi u. 46., 1088
  • 2 Magyar Tudományos Akadémia, Budapest
Open access

Absztrakt:

Napjainkban a genetikai kutatások mellett egyre inkább előtérbe kerülnek az epigenetikai vizsgálatok, ugyanis az epigenetikai jelenségek – köztük a DNS-metiláció is – részt vesznek a fenotípust meghatározó gének expressziójának szabályozásában, így számos betegség mechanizmusával összefüggenek. Jelen összefoglaló közleményünk célja az epigenetikai mechanizmusok közül a DNS-metiláció evolúció során történő megjelenésének, funkciói változatosságának, illetve az öregedésben és a rákos megbetegedésekben betöltött szerepének bemutatása. A DNS-metiláció a prokarióták, az eukarióták, illetve a vírusok körében is megfigyelhető epigenetikai módosulás. A prokarióták és vírusok esetén idegen DNS-sel szembeni védelmi funkciót lát el. A DNS-metiláció prokariótáknál jelentős szereppel bír a transzkripció regulációjában, a replikáció iniciációjában, illetve a Dam-irányított hibajavításban. A vírusoknál a védelmi funkció mellett a terjedésükhöz szükséges kapszid formálásában is részt vesz. Az eukarióták esetén a DNS-metiláció szerepet játszik a kromatinstruktúra és a transzkripció szabályozásában, a rekombinációban, a replikációban, az X-kromoszóma inaktivációjában, a transzpozonok szabályozásában és az imprinting jelenség létrehozásában. A fenti tulajdonságok mellett evolúciós szereppel is rendelkezik azáltal, hogy megváltoztatja a DNS mutációs rátáját. Az öregedés során és a rákos megbetegedésekben kialakuló globális hipometilációs eltérések genetikai instabilitáshoz és spontán mutációs eltérésekhez vezethetnek a transzpozonok szabályozásában betöltött funkciójuk révén. A lokális hipermetilációs (például az SFRP1, az SFRP2, a DKK1 és az APC promóterének hipermetilációja) változásoknak a fehérjeexpressziós változások létrehozásában, ezáltal a rák fenotípus kialakulásában van jelentős szerepe. Az elváltozások általános jellege alapján a fenti eredmények a biológiai kor és a betegségek epigenetikai változások kimutatásán alapuló diagnosztikai és prognosztikai módszerei kutatásának fontosságát támasztják alá. Orv Hetil. 2018; 159(1): 3–15.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Urbán SV, Benevolenskaya E, Kiss J, et al. Beyond genetics – The emerging role of epigenetics and its clinical aspects. [A genetikán is túl – Az epigenetika előretörése és orvosi vonatkozásai.] Orv Hetil. 2012; 153: 214–221. [Hungarian]

  • 2

    Rana AK, Ankri S. Reviving the RNA world: An insight into the appearance of RNA methyltransferases. Front Genet. 2016; 7: 99.

  • 3

    Marinus MG, Casadesus J. Roles of DNA adenine methylation in host-pathogen interactions: mismatch repair, transcriptional regulation, and more. FEMS Microbiol Rev. 2009; 33: 488–503.

  • 4

    Blow MJ, Clark TA, Daum CG, et al. The epigenomic landscape of prokaryotes. PLoS Genet. 2016; 12: e1005854.

  • 5

    Seshasayee AS, Singh P, Krishna S. Context-dependent conservation of DNA methyltransferases in bacteria. Nucleic Acids Res. 2012; 40: 7066–7073.

  • 6

    Wion D, Casadesús J. N6-methyl-adenine: an epigenetic signal for DNA–protein interactions. Nat Rev Microbiol. 2006; 4: 183–192.

  • 7

    Sternberg N, Coulby J. Cleavage of the bacteriophage P1 packaging site (pac) is regulated by adenine methylation. Proc Natl Acad Sci USA 1990; 87: 8070–8074.

  • 8

    Wilson AS, Power BE, Molloy PL. DNA hypomethylation and human diseases. Biochim Biophys Acta 2007; 1775: 138–162.

  • 9

    Pal S, Tyler JK. Epigenetics and aging. Sci Adv. 2016; 2: e1600584.

  • 10

    Clouaire T, Stancheva I. Methyl-CpG binding proteins: specialized transcriptional repressors or structural components of chromatin? Cell Mol Life Sci. 2008; 65: 1509–1522.

  • 11

    Ling C, Groop L. Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes 2009; 58: 2718–2725.

  • 12

    Riggs AD, Pfeifer GP. X-chromosome inactivation and cell memory. Trends Genet. 1992; 8: 169–174.

  • 13

    Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature 1993; 366: 362–365.

  • 14

    Yamagata Y, Szabó P, Szüts D, et al. Rapid turnover of DNA methylation in human cells. Epigenetics 2012; 7: 141–145.

  • 15

    Feng S, Cokus SJ, Zhang X, et al. Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci USA 2010; 107: 8689–8694.

  • 16

    Dixon GB, Bay LK, Matz MV. Evolutionary consequences of DNA methylation in a basal metazoan. Mol Biol Evol. 2016; 33: 2285–2293.

  • 17

    Suzuki MM, Kerr AR, De Sousa D, et al. CpG methylation is targeted to transcription units in an invertebrate genome. Genome Res. 2007; 17: 625–631.

  • 18

    Capuano F, Mülleder M, Kok R, et al. Cytosine DNA methylation is found in Drosophila melanogaster but absent in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and other yeast species. Anal Chem. 2014; 86: 3697–3702.

  • 19

    Simpson VJ, Johnson TE, Hammen RF. Caenorhabditis elegans DNA does not contain 5-methylcytosine at any time during development or aging. Nucleic Acids Res. 1986; 14: 6711–6719.

  • 20

    Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008; 9: 465–476.

  • 21

    SanMiguel P, Tikhonov A, Jin YK, et al. Nested retrotransposons in the intergenic regions of the maize genome. Science 1996; 274: 765–768.

  • 22

    Zilberman D, Gehring M, Tran RK, et al. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet. 2007; 39: 61–69.

  • 23

    Rountree MR, Selker EU. DNA methylation inhibits elongation but not initiation of transcription in Neurospora crassa. Genes Dev. 1997; 11: 2383–2395.

  • 24

    Lorincz MC, Dickerson DR, Schmitt M, et al. Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat Struct Mol Biol. 2004; 11: 1068–1075.

  • 25

    Mills RE, Bennett EA, Iskow RC, et al. Which transposable elements are active in the human genome? Trends Genet. 2007; 23: 183–191.

  • 26

    Deininger PL, Moran JV, Batzer MA, et al. Mobile elements and mammalian genome evolution. Curr Opin Genet Dev. 2003; 13: 651–658.

  • 27

    Ostertag EM, Goodier JL, Zhang Y, et al. SVA elements are nonautonomous retrotransposons that cause disease in humans. Am J Hum Genet. 2003; 73: 1444–1451.

  • 28

    Batzer MA, Deininger PL. Alu repeats and human genomic diversity. Nat Rev Genet. 2002; 3: 370–379.

  • 29

    Yoder JA, Walsh CP, Bestor TH. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 1997; 13: 335–340.

  • 30

    Roberts D, Hoopes BC, McClure WR, et al. IS10 transposition is regulated by DNA adenine methylation. Cell 1985; 43: 117–130.

  • 31

    Dodson KW, Berg DE. Factors affecting transposition activity of IS50 and Tn5 ends. Gene 1989; 76: 207–213.

  • 32

    Zhao Y, Sun H, Wang H. Long noncoding RNAs in DNA methylation: new players stepping into the old game. Cell Biosci. 2016; 6: 45.

  • 33

    Bester TH. Cloning of a mammalian DNA methyltransferase. Gene 1988; 74: 9–12.

  • 34

    Lei H, Oh SP, Okano M, et al. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 1996; 122: 3195–3205.

  • 35

    Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet. 1998; 19: 219–220.

  • 36

    Tahiliani M, Koh KP, Shen Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009; 324: 930–935.

  • 37

    Ito S, Shen L, Dai Q, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 2011; 333: 1300–1303.

  • 38

    He YF, Li BZ, Li Z, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 2011; 333: 1303–1307.

  • 39

    Valinluck V, Sowers LC. Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Res. 2007; 67: 946–950.

  • 40

    Conticello SG. The AID/APOBEC family of nucleic acid mutators. Genome Biol. 2008; 9: 229.

  • 41

    Siriwardena SU, Chen K, Bhagwat AS. Functions and malfunctions of mammalian DNA-cytosine deaminases. Chem Rev. 2016; 116: 12688–12710.

  • 42

    Mugal CF, Ellegren H. Substitution rate variation at human CpG sites correlates with non-CpG divergence, methylation level and GC content. Genome Biol. 2011; 12: R58.

  • 43

    Holliday R, Grigg GW. DNA methylation and mutation. Mutat Res. 1993; 285: 61–67.

  • 44

    Morgan HD, Dean W, Coker HA, et al. Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming. J Biol Chem. 2004; 279: 52353–52360.

  • 45

    Bochtler M, Kolano A, Xu GL. DNA demethylation pathways: Additional players and regulators. Bioessays 2017; 39: 1–13.

  • 46

    Hardeland U, Bentele M, Jiricny J, et al. The versatile thymine DNA-glycosylase: a comparative characterization of the human, Drosophila and fission yeast orthologs. Nucleic Acids Res. 2003; 31: 2261–2271.

  • 47

    Niculescu MD, Zeisel SH. Diet, methyl donors and DNA methylation: interactions between dietary folate, methionine and choline. J Nutr. 2002; 132: 2333S–2335S.

  • 48

    Dominguez PM, Shaknovich R. Epigenetic function of activation-induced cytidine deaminase and its link to lymphomagenesis. Front Immunol. 2014; 5: 642.

  • 49

    Viré E, Brenner C, Deplus R, et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 2006; 439: 871–874.

  • 50

    Velasco G, Hubé F, Rollin J, et al. Dnmt3b recruitment through E2F6 transcriptional repressor mediates germ-line gene silencing in murine somatic tissues. Proc Natl Acad Sci USA 2010; 107: 9281–9286.

  • 51

    Fu A, Jacobs DI, Zhu Y. Epigenome-wide analysis of piRNAs in gene-specific DNA methylation. RNA Biol. 2014; 11: 1301–1312.

  • 52

    Siomi MC, Sato K, Pezic D, et al. PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol. 2011; 12: 246–258.

  • 53

    Di Ruscio A, Ebralidze AK, Benoukraf T, et al. DNMT1-interacting RNAs block gene-specific DNA methylation. Nature 2013; 503: 371–376.

  • 54

    Chalei V, Sansom SN, Kong L, et al. The long non-coding RNA Dali is an epigenetic regulator of neural differentiation. Elife 2014; 3: e04530.

  • 55

    Zhang X, Zhou Y, Mehta KR, et al. A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J Clin Endocrinol Metab. 2003; 88: 5119–5126.

  • 56

    Nagy Z, Szabó DR, Zsippai A, et al. Relevance of long non-coding RNAs in tumour biology. [A hosszú, nem kódoló RNS-ek jelentősége a daganatbiológiában.] Orv Hetil. 2012; 153: 1494–1501. [Hungarian]

  • 57

    Fraga MF, Ballestar E, Paz MF, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 2005; 102: 10604–10609.

  • 58

    Gautrey HE, van Otterdijk SD, Cordell HJ, et al. DNA methylation abnormalities at gene promoters are extensive and variable in the elderly and phenocopy cancer cells. FASEB J. 2014; 28: 3261–3272.

  • 59

    Weidner CI, Lin Q, Koch CM, et al. Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol. 2014; 15: R24.

  • 60

    Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013; 14: R115.

  • 61

    Horvath S. Erratum to: DNA methylation age of human tissues and cell types. Genome Biol. 2015; 16: 96.

  • 62

    Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer 2004; 4: 143–153.

  • 63

    Goelz SF, Vogelstein B, Hamilton SR, et al. Hypomethylation of DNA from benign and malignant human colon neoplasms. Science 1985; 228: 187–190.

  • 64

    Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene 2002; 21: 5400–5413.

  • 65

    Phokaew C, Kowudtitham S, Subbalekha K, et al. LINE-1 methylation patterns of different loci in normal and cancerous cells. Nucleic Acids Res. 2008; 36: 5704–5712.

  • 66

    Martin V, Ribieras S, Song-Wang XG, et al. Involvement of DNA methylation in the control of the expression of an estrogen-induced breast-cancer-associated protein (pS2) in human breast cancers. J Cell Biochem. 1997; 65: 95–106.

  • 67

    Gama-Sosa MA, Slagel VA, Trewyn RW, et al. The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res. 1983; 11: 6883–6894.

  • 68

    Long HK, King HW, Patient RK, et al. Protection of CpG islands from DNA methylation is DNA-encoded and evolutionarily conserved. Nucleic Acids Res. 2016; 44: 6693–6706.

  • 69

    Kane MF, Loda M, Gaida GM, et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 1997; 57: 808–811.

  • 70

    Kalmár A. Analysis of genes with altered expression along colorectal tumor formation and their regulatory processes. PhD thesis. Semmelweis University, Clinical Medicine Doctoral School, Budapest, 2015. [A vastagbéldaganatok kialakulása során megváltozó expressziójú gének és szabályozó folyamataik vizsgálata. Doktori értekezés. Semmelweis Egyetem, Klinikai Orvostudományi Doktori Iskola, Budapest, 2015.] [Hungarian]

  • 71

    Kim YH, Petko Z, Dzieciatkowski S, et al. CpG island methylation of genes accumulates during the adenoma progression step of the multistep pathogenesis of colorectal cancer. Genes Chromosomes Cancer 2006; 45: 781–789.

  • 72

    Lee S, Hwang KS, Lee HJ, et al. Aberrant CpG island hypermethylation of multiple genes in colorectal neoplasia. Lab Invest. 2004; 84: 884–893.

  • 73

    Galamb O, Kalmár A, Péterfia B, et al. Aberrant DNA methylation of WNT pathway genes in the development and progression of CIMP-negative colorectal cancer. Epigenetics 2016; 11: 588–602.

  • 74

    Kalmár A, Péterfia B, Hollósi P, et al. DNA hypermethylation and decreased mRNA expression of MAL, PRIMA1, PTGDR and SFRP1 in colorectal adenoma and cancer. BMC Cancer 2015; 15: 736.

  • 75

    Patai ÁV, Valcz G, Hollósi P, et al. Comprehensive DNA methylation analysis reveals a common ten-gene methylation signature in colorectal adenomas and carcinomas. PLoS One 2015; 10: e0133836.

  • 76

    Silva AL, Dawson SN, Arends MJ, et al. Boosting Wnt activity during colorectal cancer progression through selective hypermethylation of Wnt signaling antagonists. BMC Cancer 2014; 14: 891.

  • 77

    Ausch C, Kim YH, Tsuchiya KD, et al. Comparative analysis of PCR-based biomarker assay methods for colorectal polyp detection from fecal DNA. Clin Chem. 2009; 55: 1559–1563.

  • 78

    Petko Z, Ghiassi M, Shuber A, et al. Aberrantly methylated CDKN2A, MGMT, and MLH1 in colon polyps and in fecal DNA from patients with colorectal polyps. Clin Cancer Res. 2005; 11: 1203–1209.

  • 79

    Müller HM, Oberwalder M, Fiegl H, et al. Methylation changes in faecal DNA: a marker for colorectal cancer screening? Lancet 2004; 363: 1283–1285.

  • 80

    Tan SH, Ida H, Lau QC, et al. Detection of promoter hypermethylation in serum samples of cancer patients by methylation-specific polymerase chain reaction for tumour suppressor genes including RUNX3. Oncol Rep. 2007; 18: 1225–1230.

  • 81

    Lofton-Day C, Model F, Devos T, et al. DNA methylation biomarkers for blood-based colorectal cancer screening. Clin Chem. 2008; 54: 414–423.

  • 82

    Tóth K, Sipos F, Kalmár A, et al. Detection of methylated SEPT9 in plasma is a reliable screening method for both left- and right-sided colon cancers. PLoS One 2012; 7: e46000.

  • 83

    Tóth K, Galamb O, Spisák S, et al. Free circulating DNA based colorectal cancer screening from peripheral blood: the possibility of the methylated septin 9 gene marker. [Szabad DNS-alapú vastagbéldaganat-szűrés perifériás vérből: a metilált szeptin-9 génmarker lehetőségei.] Orv Hetil. 2009; 150: 969–977. [Hungarian]

  • 84

    Barták BK, Kalmár A, Péterfia B, et al. Colorectal adenoma and cancer detection based on altered methylation pattern of SFRP1, SFRP2, SDC2, and PRIMA1 in plasma samples. Epigenetics 2017 Jul 28: 1–13. [Epub ahead of print]

    • Crossref
    • Export Citation
  • 85

    Yang X, Han H, De Carvalho DD, et al. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell 2014; 26: 577–590.

  • 86

    Varley KE, Gertz J, Bowling KM, et al. Dynamic DNA methylation across diverse human cell lines and tissues. Genome Res. 2013; 23: 555–567.

  • 87

    Maunakea AK, Nagarajan RP, Bilenky M, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 2010; 466: 253–257.

  • 88

    Irizarry RA, Ladd-Acosta C, Wen B, et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2009; 41: 178–186.

  • 89

    Issa JP. The cancer epigenome: Is epigenetic deregulation the chicken or the egg? American Association for Cancer Research Annual Meeting 2015, Philadelphia.

  • 90

    Xia J, Han L, Zhao Z. Investigating the relationship of DNA methylation with mutation rate and allele frequency in the human genome. BMC Genomics 2012; 13: S7.

  • 91

    Shen JC, Rideout WM 3rd, Jones PA. The rate of hydrolytic deamination of 5-methylcytosine in double-stranded DNA. Nucleic Acids Res. 1994; 22: 972–976.

  • 92

    Laland K, Uller T, Feldman M, et al. Does evolutionary theory need a rethink? Nature 2014; 514: 161–164.

  • 93

    Skinner MK. Environmental epigenetics and a unified theory of the molecular aspects of evolution: a neo-Lamarckian concept that facilitates neo-Darwinian evolution. Genome Biol Evol. 2015; 7: 1296–1302.

  • 94

    Skinner MK. Environmental epigenetic transgenerational inheritance and somatic epigenetic mitotic stability. Epigenetics 2011; 6: 838–842.

  • 95

    Esteller M, Herman JG. Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J Pathol. 2001; 196: 1–7.

  • 96

    Ushijima T, Asada K. Aberrant DNA methylation in contrast with mutations. Cancer Sci. 2010; 101: 300–305.

  • 97

    Galanopoulos M, Tsoukalas N, Papanikolaou IS, et al. Abnormal DNA methylation as a cell-free circulating DNA biomarker for colorectal cancer detection: A review of literature. World J Gastrointest Oncol. 2017; 9: 142–152.

  • 98

    Warton K, Samimi G. Methylation of cell-free circulating DNA in the diagnosis of cancer. Front Mol Biosci. 2015; 2: 13.

  • 99

    Eckschlager T, Plch J, Stiborova M, et al. Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci. 2017; 18: 1414.

  • 100

    Falkenberg KJ, Johnstone RW. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov. 2014; 13: 673–691.

  • 101

    Yang X, Lay F, Han H, et al. Targeting DNA methylation for epigenetic therapy. Trends Pharmacol Sci. 2010; 31: 536–546.

  • 102

    Spisák S, Kalmár A, Galamb O, et al. Identification of methylation related genes from laser capture microdissected colon samples during investigation of adenoma–carcinoma sequence. [Metilációs szabályozás alatt álló gének azonosítása lézerrel kimetszett vastagbéldaganat-sejtekben az adenoma–carcinoma sorrend vizsgálata során.] Orv Hetil. 2010; 151: 805–814. [Hungarian]