View More View Less
  • 1 Semmelweis Egyetem, Általános Orvostudományi Kar, Budapest, Baross u. 27., 1088
Open access

Absztrakt:

A praeeclampsia súlyos anyai és magzati szövődményekkel járó kórkép, mely a terhességek 3–8%-át érinti világszerte. Legfőbb tünetei a 20. terhességi hét után jelentkező magas vérnyomás és a kóros fehérjevizelés. A betegség kialakulásának oka a mai napig vitatott. A mikro-RNS-ek rövid, nem kódoló RNS-molekulák, amelyek fontos szerepet töltenek be az eukaryota gének poszttranszkripciós szabályozásában. Olyan alapvető élettani folyamatok finomhangolásában vesznek részt, mint a sejtciklus, a proliferáció, a differenciáció és a sejthalál. Genomszintű vizsgálatok során a placentában több száz mikro-RNS-t azonosítottak, melyek feltehetően részt vesznek a placentáció szabályozásában, és szükségesek a terhesség zavartalan lefolyásához. Több tanulmány számolt be a mikro-RNS-ek megváltozott expressziójáról terhességi kórképekben. A rendellenes mikro-RNS-szabályozás hozzájárulhat a praeeclampsia kialakulásához, mivel befolyásolja a trophoblastsejtek proliferációját, migrációját és invázióját, a spirális artériák remodellingjét és az angiogenezist. A placentáris mikro-RNS-ek egy része (például a C19MC mikro-RNS-klaszter tagjai) a trophoblastsejtek által termelt exoszómák révén kijut az anyai véráramba. Ezek az úgynevezett „keringő” mikro-RNS-ek stabilitásuk és specifikusságuk révén biomarkerként szolgálhatnak különböző placentaeredetű kórképek kimutatására. Orv Hetil. 2018; 159(14): 547–556.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Duley L. The global impact of pre-eclampsia and eclampsia. Semin Perinatol. 2009; 33: 130–137.

  • 2

    Tranquilli AL, Dekker G, Magee L, et al. The classification, diagnosis and management of the hypertensive disorders of pregnancy: A revised statement from the ISSHP. Pregnancy Hypertens. 2014; 4: 97–104.

  • 3

    Alasztics B, Kukor Z, Pánczél Z, et al. The pathophysiology of preeclampsia in view of the two-stage model. [A praeeclampsia kórélettana a kétlépcsős modell tükrében.] Orv Hetil. 2012; 153: 1167–1176. [Hungarian]

  • 4

    American College of Obstetricians and Gynecologists, Task Force on Hypertension in Pregnancy. Hypertension in pregnancy. Obstet Gynecol. 2013; 122: 1122–1131.

  • 5

    Redman CW. Early and late onset preeclampsia: Two sides of the same coin. Pregnancy Hypertens. 2017; 7: 58.

  • 6

    Raymond D, Peterson E. A critical review of early-onset and late-onset preeclampsia. Obstet Gynecol Surv. 2011; 66: 497–506.

  • 7

    Craici I, Wagner S, Garovic VD. Review: Preeclampsia and future cardiovascular risk: formal risk factor or failed stress test? Ther Adv Cardiovasc Dis. 2008; 2: 249–259.

  • 8

    Alasztics B, Gullai N, Molvarec A, et al. The role of angiogenic factors in preeclampsia. [Az angiogén faktorok szerepe praeeclampsiában.] Orv Hetil. 2014; 155: 1860–1866. [Hungarian]

  • 9

    Escudero CA, Herlitz K, Troncoso F, et al. Role of extracellular vesicles and microRNAs on dysfunctional angiogenesis during preeclamptic pregnancies. Front Physiol. 2016; 7: 98.

  • 10

    Raposo G, Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J Cell Biol. 2013; 200: 373–383.

  • 11

    Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014; 30: 255–289.

  • 12

    Turchinovich A, Samatov TR, Tonevitsky AG, et al. Circulating miRNAs: Cell-cell communication function? Front Genet. 2013; 4: 119.

  • 13

    Kowal J, Arras G, Colombo M, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci USA 2016; 113: E968–E977.

  • 14

    Salomon C, Torres MJ, Kobayashi M, et al. A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration. PLoS ONE 2014; 9: e98667.

  • 15

    Sheikh AM, Small HY, Currie G, et al. Systematic review of micro-RNA expression in pre-eclampsia identifies a number of common pathways associated with the disease. PLoS ONE 2016; 11: e0160808.

  • 16

    Bounds KR, Chiasson VL, Pan LJ, et al. MicroRNAs: New players in the pathobiology of preeclampsia. Front Cardiovasc Med. 2017; 4: 60.

  • 17

    Salomon C, Guanzon D, Scholz-Romero K, et al. Placental exosomes as early biomarker of preeclampsia: Potential role of exosomal microRNAs across gestation. J Clin Endocrinol Metab. 2017; 102: 3182–3194.

  • 18

    Murphy MS, Tayade C, Smith GN. Maternal circulating microRNAs and pre-eclampsia: Challenges for diagnostic potential. Mol Diagn Ther. 2017; 21: 23–30.

  • 19

    Nothnick WB. MicroRNAs and endometriosis: Distinguishing drivers from passengers in disease pathogenesis. Semin Reprod Med. 2017; 35: 173–180.

  • 20

    Poirier C, Desgagné V, Guérin R, et al. MicroRNAs in pregnancy and gestational diabetes mellitus: Emerging role in maternal metabolic regulation. Curr Diab Rep. 2017; 17: 35.

  • 21

    Butz H, Patócs A. Technical aspects related to the analysis of circulating microRNAs. In: Igaz P. (ed.) Circulating microRNAs in disease diagnostics and their potential biological relevance. Experientia Supplementum 106. Springer, Basel, 2015; pp. 55–71.

  • 22

    miRBase. Homo sapiens miRNAs (1881 sequences). Available from: http://www.mirbase.org/cgi-bin/mirna_summary.pl?org=hsa [accessed: September 26, 2017].

  • 23

    Yates LA, Norbury CJ, Gilbert RJ, et al. The long and short of microRNA. Cell 2013; 153: 516–519.

  • 24

    Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008; 2008: 102–114.

  • 25

    Nagy Z, Igaz P. Introduction to microRNAs: Biogenesis, action, relevance of tissue microRNAs in disease pathogenesis, diagnosis and therapy – The concept of circulating microRNAs. In: Igaz P. (ed.) Circulating microRNAs in disease diagnostics and their potential biological relevance. Experientia Supplementum 106. Springer, Basel, 2015; 106: 3–30.

  • 26

    Mouillet JF, Ouyang Y, Coyne CB, et al. MicroRNAs in placental health and disease. Am J Obstet Gynecol. 2015; 213: S163–S172.

  • 27

    Fu G, Brkić J, Hayder H, et al. MicroRNAs in human placental development and pregnancy complications. Int J Mol Sci. 2013; 14: 5519–5544.

  • 28

    Mouillet JF, Chu T, Sadovsky Y. Expression patterns of placental microRNAs. Birth Defects Res Part A Clin Mol Teratol. 2011; 91: 737–743.

  • 29

    Lykke-Andersen K, Gilchrist MJ, Grabarek JB, et al. Maternal argonaute 2 is essential for early mouse development at the maternal-zygotic transition. Mol Biol Cell 2008; 19: 4383–4392.

  • 30

    Cheloufi S, Dos Santos CO, Chong MM, et al. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 2010; 465: 584–589.

  • 31

    Morales-Prieto DM, Ospina-Prieto S, Schmidt A, et al. Elsevier trophoblast research award lecture: Origin, evolution and future of placenta miRNAs. Placenta 2014; 35: S39–S45.

  • 32

    Morales-Prieto DM, Chaiwangyen W, Ospina-Prieto S, et al. MicroRNA expression profiles of trophoblastic cells. Placenta 2012; 33: 725–734.

  • 33

    Seitz H, Royo H, Bortolin ML, et al. A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Res. 2004; 14: 1741–1748.

  • 34

    Bortolin-Cavaille ML, Noguer-Dance M, Weber M, et al. C19MC microRNAs are processed from introns of large Pol-II, non-protein-coding transcripts. Nucleic Acids Res. 2009; 37: 3464–3473.

  • 35

    Noguer-Dance M, Abu-Amero S, Al-Khtib M, et al. The primate-specific microRNA gene cluster (C19MC) is imprinted in the placenta. Hum Mol Genet. 2010; 19: 3566–3582.

  • 36

    Hromadnikova I, Kotlabova K, Doucha J, et al. Absolute and relative quantification of placenta-specific microRNAs in maternal circulation with placental insufficiency-related complications. J Mol Diagnostics 2012; 14: 160–167.

  • 37

    Dumont TM, Mouillet JF, Bayer A, et al. The expression level of C19MC miRNAs in early pregnancy and in response to viral infection. Placenta 2017; 53: 23–29.

  • 38

    Schönleben M, Morales-Prieto DM, Markert U, et al. Association of the miR-371–3 cluster and trophoblast migration. J Reprod Immunol. 2016; 115: 57.

  • 39

    Wang W, Feng L, Zhang H, et al. Preeclampsia up-regulates angiogenesis-associated microRNA (i.e., miR-17, -20a, and -20b) that target ephrin-B2 and EPHB4 in human placenta. J Clin Endocrinol Metab. 2012; 97: E1051–E1059.

  • 40

    Chen S, Zhao G, Miao H, et al. MicroRNA-494 inhibits the growth and angiogenesis-regulating potential of mesenchymal stem cells. FEBS Lett. 2015; 589: 710–717.

  • 41

    Zhang Y, Diao Z, Su L, et al. MicroRNA-155 contributes to preeclampsia by down-regulating CYR61. Am J Obstet Gynecol. 2010; 202: 466.e1–466.e7.

  • 42

    Liu LZ, Li C, Chen Q, et al. MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1α expression. PLoS ONE 2011; 6: e19139.

  • 43

    Ishibashi O, Ohkuchi A, Ali MM, et al. Hydroxysteroid (17-β) dehydrogenase 1 is dysregulated by miR-210 and miR-518c that are aberrantly expressed in preeclamptic placentas: A novel marker for predicting preeclampsia. Hypertension 2012; 59: 265–273.

  • 44

    Zhang Y, Fei M, Xue G, et al. Elevated levels of hypoxia-inducible microRNA-210 in pre-eclampsia: new insights into molecular mechanisms for the disease. J Cell Mol Med. 2012; 16: 249–259.

  • 45

    Li Q, Pan Z, Wang X, et al. miR-125b-1-3p inhibits trophoblast cell invasion by targeting sphingosine-1-phosphate receptor 1 in preeclampsia. Biochem Biophys Res Commun. 2014; 453: 57–63.

  • 46

    Doridot L, Houry D, Gaillard H, et al. miR-34a expression, epigenetic regulation, and function in human placental diseases. Epigenetics 2014; 9: 142–151.

  • 47

    Luo R, Shao X, Xu P, et al. MicroRNA-210 contributes to preeclampsia by downregulating potassium channel modulatory factor 1. Hypertension 2014; 64: 839–845.

  • 48

    Li X, Li C, Dong X, et al. MicroRNA-155 inhibits migration of trophoblast cells and contributes to the pathogenesis of severe preeclampsia by regulating endothelial nitric oxide synthase. Mol Med Rep. 2014; 10: 550–554.

  • 49

    Dai Y, Diao Z, Sun H, et al. MicroRNA-155 is involved in the remodelling of human-trophoblast-derived HTR-8/SVneo cells induced by lipopolysaccharides. Hum Reprod. 2011; 26: 1882–1891.

  • 50

    Luo L, Ye G, Nadeem L, et al. MicroRNA-378a-5p promotes trophoblast cell survival, migration and invasion by targeting Nodal. J Cell Sci. 2012; 125: 3124–3132.

  • 51

    Chaiwangyen W, Ospina-Prieto S, Photini SM, et al. Dissimilar microRNA-21 functions and targets in trophoblastic cell lines of different origin. Int J Biochem Cell Biol. 2015; 68: 187–196.

  • 52

    Fu G, Ye G, Nadeem L, et al. MicroRNA-376c impairs transforming growth factor-β and Nodal signaling to promote trophoblast cell proliferation and invasion. Hypertension 2013; 61: 864–872.

  • 53

    Kumar P, Luo Y, Tudela C, et al. The c-Myc-regulated microRNA-17~92 (miR-17~92) and miR-106a~363 clusters target hCYP19A1 and hGCM1 to inhibit human trophoblast differentiation. Mol Cell Biol. 2013; 33: 1782–1796.

  • 54

    Xue P, Zheng M, Diao Z, et al. miR-155* mediates suppressive effect of PTEN 3’-untranslated region on AP-1/NF-κB pathway in HTR-8/SVneo cells. Placenta 2013; 34: 650–656.

  • 55

    Zhao G, Miao H, Li X, et al. TGF-β3-induced miR-494 inhibits macrophage polarization via suppressing PGE2 secretion in mesenchymal stem cells. FEBS Lett. 2016; 590: 1602–1613.

  • 56

    Liu L, Wang Y, Fan H, et al. MicroRNA-181a regulates local immune balance by inhibiting proliferation and immunosuppressive properties of mesenchymal stem cells. Stem Cells 2012; 30: 1756–1770.

  • 57

    Zhu X, Han T, Wang X, et al. Overexpression of miR-152 leads to reduced expression of human leukocyte antigen-G and increased natural killer cell mediated cytolysis in JEG-3 cells. Am J Obstet Gynecol. 2010; 202: 592.e1–592.e7.

  • 58

    Kopriva SE, Chiasson VL, Mitchell BM, et al. TLR3-induced placental miR-210 down-regulates the STAT6/interleukin-4 pathway. PLoS ONE 2013; 8: e67760.

  • 59

    Yang W, Wang A, Zhao C, et al. miR-125b enhances IL-8 production in early-onset severe preeclampsia by targeting sphingosine-1-phosphate lyase 1. PLoS ONE 2016; 11: e0166940.

  • 60

    Biró O, Nagy B, Rigó J. Identifying miRNA regulatory mechanisms in preeclampsia by systems biology approaches. Hypertens Pregnancy 2017; 36: 90–99.

  • 61

    Xie L, Mouillet JF, Chu T, et al. C19MC microRNAs regulate the migration of human trophoblasts. Endocrinology 2014; 155: 4975–4985.

  • 62

    Anton L, Olarerin-George AO, Hogenesch JB, et al. Placental expression of miR-517a/b and miR-517c contributes to trophoblast dysfunction and preeclampsia. PLoS ONE 2015; 10: e0122707.

  • 63

    Delorme-Axford E, Donker RB, Mouillet J-F, et al. Human placental trophoblasts confer viral resistance to recipient cells. Proc Natl Acad Sci USA 2013; 110: 12048–12053.

  • 64

    Mouillet JF, Ouyang Y, Bayer A, et al. The role of trophoblastic microRNAs in placental viral infection. Int J Dev Biol. 2014; 58: 281–289.

  • 65

    Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008; 18: 997–1006.

  • 66

    Gilad S, Meiri E, Yogev Y, et al. Serum microRNAs are promising novel biomarkers. PLoS ONE 2008; 3: e3148.

  • 67

    Ura B, Feriotto G, Monasta L, et al. Potential role of circulating microRNAs as early markers of preeclampsia. Taiwan J Obstet Gynecol. 2014; 53: 232–234.

  • 68

    Hromadnikova I, Kotlabova K, Ivankova K, et al. First trimester screening of circulating C19MC microRNAs and the evaluation of their potential to predict the onset of preeclampsia and IUGR. PLoS ONE 2017; 12: e0171756.

  • 69

    Anton L, Olarerin-George AO, Schwartz N, et al. miR-210 inhibits trophoblast invasion and is a serum biomarker for preeclampsia. Am J Pathol. 2013; 183: 1437–1445.

  • 70

    Xu P, Zhao Y, Liu M, et al. Variations of microRNAs in human placentas and plasma from preeclamptic pregnancy. Hypertension 2014; 63: 1276–1284.

  • 71

    Yang Q, Lu J, Wang S, et al. Application of next-generation sequencing technology to profile the circulating microRNAs in the serum of preeclampsia versus normal pregnant women. Clin Chim Acta 2011; 412: 2167–2173.

  • 72

    Hromadnikova I, Kotlabova K, Ondrackova M, et al. Circulating C19MC microRNAs in preeclampsia, gestational hypertension, and fetal growth restriction. Mediators Inflamm. 2013; 2013: 186041.

  • 73

    Gunel T, Zeybek YG, Akçakaya P, et al. Serum microRNA expression in pregnancies with preeclampsia. Genet Mol Res. 2011; 10: 4034–4040.

  • 74

    Wu L, Zhou H, Lin H, et al. Circulating microRNAs are elevated in plasma from severe preeclamptic pregnancies. Reproduction 2012; 143: 389–397.

  • 75

    Zhu S, Cao L, Zhu J, et al. Identification of maternal serum microRNAs as novel non-invasive biomarkers for prenatal detection of fetal congenital heart defects. Clin Chim Acta 2013; 424: 66–72.

  • 76

    Murphy MS, Casselman RC, Tayade C, et al. Differential expression of plasma microRNA in preeclamptic patients at delivery and 1 year postpartum. Am J Obstet Gynecol. 2015; 213: 367.e1–367.e9.

  • 77

    Biró O, Alasztics B, Molvarec A, et al. Various levels of circulating exosomal total-miRNA and miR-210 hypoxamiR in different forms of pregnancy hypertension. Pregnancy Hypertens. 2017; 10: 207–212.

  • 78

    Miura K, Higashijima A, Murakami Y, et al. Circulating levels of pregnancy-associated, placenta-specific microRNAs in pregnant women with placental abruption. Reprod Sci. 2017; 24: 148–155.

  • 79

    Chang G, Mouillet J-F, Mishima T, et al. Expression and trafficking of placental microRNAs at the feto-maternal interface. FASEB J. 2017; 31: 2760–2770.

  • 80

    Hromadnikova I, Kotlabova K, Hympanova L, et al. First trimester screening of circulating C19MC microRNAs can predict subsequent onset of gestational hypertension. PLoS ONE 2014; 9: e113735.

  • 81

    Biró O, Fóthi Á, Alasztics B, et al. The expression profile of miR-517 family members in preeclamptic placenta and circulating exosome samples. Pregnancy Hypertens. 2017; 9: 46.

  • 82

    Chan SY, Loscalzo J. MicroRNA-210: a unique and pleiotropic hypoxamir. Cell Cycle 2010; 9: 1072–1083.

  • 83

    Huang X, Le QT, Giaccia AJ. MiR-210-micromanager of the hypoxia pathway. Trends Mol Med. 2010; 16: 230–237.

  • 84

    Huang X, Ding L, Bennewith KL, et al. Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell 2009; 35: 856–867.

  • 85

    miRWalk2.0: a comprehensive atlas of predicted and validated miRNA-target interactions. Available from: http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/ [accessed: September 26, 2017].

  • 86

    miRTarBase: the experimentally validated microRNA-target interactions database. Available from: http://mirtarbase.mbc.nctu.edu.tw/ [accessed: September 26, 2017].

  • 87

    Beilke S, Oswald F, Genze F, et al. The zinc-finger protein KCMF1 is overexpressed during pancreatic cancer development and downregulation of KCMF1 inhibits pancreatic cancer development in mice. Oncogene 2010; 29: 4058–4067.

  • 88

    Muralimanoharan S, Maloyan A, Mele J, et al. MIR-210 modulates mitochondrial respiration in placenta with preeclampsia. Placenta 2012; 33: 816–823.

  • 89

    Lee DC, Romero R, Kim JS, et al. miR-210 targets iron-sulfur cluster scaffold homologue in human trophoblast cell lines. Am J Pathol. 2011; 179: 590–602.

  • 90

    Nadkarni NA, Rajakumar A, Mokhashi N, et al. Gelsolin is an endogenous inhibitor of syncytiotrophoblast extracellular vesicle shedding in pregnancy. Pregnancy Hypertens. 2016; 6: 333–339.