View More View Less
  • 1 Semmelweis Egyetem, Általános Orvostudományi Kar, Budapest, Üllői út 26., 1085
  • 2 Pécsi Tudományegyetem, Általános Orvostudományi Kar, Pécs
  • 3 Leiden University Medical Center, Leiden, Hollandia
Open access

Absztrakt:

A malignus hematológiai betegségek kialakulását, progresszióját, illetve terápiával szemben mutatott rezisztenciáját kísérő genetikai eltéréseket ma már egyre alaposabban ismerjük. A klinikailag releváns abnormalitásoknak a mindennapi diagnosztika keretein belül való célzott kimutatása gyors, megbízható és költséghatékony módszereket igényel. A multiplex ligatiofüggő szondaamplifikáció a genomikus kópiaszám-eltérések vizsgálatának hatékony eszköze, mellyel 55–60 lókusz egyidejűleg analizálható. Az eljárás lehetőséget nyújt prognosztikai és prediktív markerek átfogó felderítésére, így alkalmazása hatékonyan kombinálható a kariotipizálással és fluoreszcencia in situ hibridizációval, melyek jelenleg a legelterjedtebb diagnosztikus technikák citogenetikai aberrációk kimutatására. Ezenkívül a módszer képes a metilációs státusz célzott meghatározására és specifikus mutációk detektálására is, 24 órán belül eredményt szolgáltatva. Az alábbiakban bemutatjuk a multiplex ligatiofüggő szondaamplifikáció technikai hátterét, összefoglaljuk előnyeit és korlátait, valamint megbeszéljük az onkohematológiai kutatásban és diagnosztikában betöltött szerepét. Végezetül, az új generációs szekvenáláshoz kapcsolódó, közelmúltbeli technológiai újítások fényében tárgyaljuk a módszerben rejlő jövőbeli lehetőségeket. Orv Hetil. 2018; 159(15): 583–592.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Greaves M. Leukaemia ‘firsts’ in cancer research and treatment. Nat Rev Cancer 2016; 16: 163–172.

  • 2

    Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer. Nature 2013; 500: 415–421.

  • 3

    Nowell PC, Hungerford DA. A minute chromosome in human chronic granulocytic leukemia. Science 1960; 132: 1497.

  • 4

    Druker BJ, Tamura S, Buchdunger E, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med. 1996; 2: 561–566.

  • 5

    Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016; 127: 2375–2390.

  • 6

    Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016; 127: 2391–2405.

  • 7

    Taylor J, Xiao W, Abdel-Wahab O. Diagnosis and classification of hematologic malignancies on the basis of genetics. Blood 2017; 130: 410–423.

  • 8

    Dávid A, Butz H, Halász Z, et al. The prevalence of SHOX gene deletion in children with idiopathic short stature. A multicentric study. [A SHOX géndeletio előfordulása idiopathiás alacsonynövésben. Multicentrikus tanulmány.] Orv Hetil. 2017; 158: 1351–1356. [Hungarian]

  • 9

    Kövesdi E, Bene J, Nagy N, et al. Importance of gross deletions in the diagnosis of tuberous sclerosis complex: the first Hungarian cases. [A nagyobb méretű géndeletiók jelentősége a sclerosis tuberosa diagnosztikájában: az első magyar esetek bemutatása.] Orv Hetil. 2017; 158: 1188–1194. [Hungarian]

  • 10

    Homig-Holzel C, Savola S. Multiplex ligation-dependent probe amplification (MLPA) in tumor diagnostics and prognostics. Diagn Mol Pathol. 2012; 21: 189–206.

  • 11

    Schouten JP, McElgunn CJ, Waaijer R, et al. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 2002; 30: e57.

  • 12

    Nygren AO, Ameziane N, Duarte HMB, et al. Methylation-Specific MLPA (MS-MLPA): simultaneous detection of CpG methylation and copy number changes of up to 40 sequences. Nucleic Acids Res. 2005; 33: e128.

  • 13

    Moelans CB, Atanesyan L, Savola SP, et al. Methylation-Specific Multiplex Ligation-Dependent Probe Amplification (MS-MLPA). Methods Mol Biol. 2018; 1708: 537–549.

  • 14

    Atanesyan L, Steenkamer MJ, Horstman A, et al. Optimal fixation conditions and DNA extraction methods for MLPA analysis on FFPE tissue-derived DNA. Am J Clin Pathol. 2017; 147: 60–68.

  • 15

    Buijs A, Krijtenburg PJ, Meijer E. Detection of risk-identifying chromosomal abnormalities and genomic profiling by multiplex ligation-dependent probe amplification in chronic lymphocytic leukemia. Haematologica 2006; 91: 1434–1435.

  • 16

    Coll-Mulet L, Santidrián AF, Cosialls AM, et al. Multiplex ligation-dependent probe amplification for detection of genomic alterations in chronic lymphocytic leukaemia. Br J Haematol. 2008; 142: 793–801.

  • 17

    Stevens-Kroef M, Simons A, Gorissen H, et al. Identification of chromosomal abnormalities relevant to prognosis in chronic lymphocytic leukemia using multiplex ligation-dependent probe amplification. Cancer Genet Cytogenet. 2009; 195: 97–104.

  • 18

    Groenen PJ, Raymakers R, Rombout PD, et al. High prevalence of adverse prognostic genetic aberrations and unmutated IGHV genes in small lymphocytic lymphoma as compared to chronic lymphocytic leukemia. J Hematopathol. 2011; 4: 189–197.

  • 19

    Fabris S, Scarciolla O, Morabito F, et al. Multiplex ligation-dependent probe amplification and fluorescence in situ hybridization to detect chromosomal abnormalities in chronic lymphocytic leukemia: a comparative study. Genes Chromosomes Cancer 2011; 50: 726–734.

  • 20

    Al Zaabi EA, Fernandez LA, Sadek IA, et al. Multiplex ligation-dependent probe amplification versus multiprobe fluorescence in situ hybridization to detect genomic aberrations in chronic lymphocytic leukemia: A tertiary center experience. J Mol Diagn. 2010; 12: 197–203.

  • 21

    Véronèse L, Tournilhac O, Combes P, et al. Contribution of MLPA to routine diagnostic testing of recurrent genomic aberrations in chronic lymphocytic leukemia. Cancer Genet. 2013; 206: 19–25.

  • 22

    Fésüs V, Marosvári D, Kajtár B, et al. TP53 mutation analysis in chronic lymphocytic leukaemia. [A TP53-mutáció-analízis jelentősége krónikus lymphocytás leukaemiában.] Orv Hetil. 2017; 158: 220–228. [Hungarian]

  • 23

    Farooqui MZ, Valdez J, Martyr S, et al. Ibrutinib for previously untreated and relapsed or refractory chronic lymphocytic leukaemia with TP53 aberrations: a phase 2, single-arm trial. Lancet Oncol. 2015; 16: 169–176.

  • 24

    Weston VJ, Oldreive CE, Skowronska A, et al. The PARP inhibitor olaparib induces significant killing of ATM-deficient lymphoid tumor cells in vitro and in vivo. Blood 2010; 116: 4578–4587.

  • 25

    Mous R, Jaspers A, Luijks DM, et al. Detection of p53 dysfunction in chronic lymphocytic leukaemia cells through multiplex quantification of p53 target gene induction. Leukemia 2009; 23: 1352–1355.

  • 26

    te Raa GD, Moerland PD, Leeksma AC, et al. Assessment of p53 and ATM functionality in chronic lymphocytic leukemia by multiplex ligation-dependent probe amplification. Cell Death Dis. 2015; 6: e1852.

  • 27

    Schwab CJ, Jones LR, Morrison H, et al. Evaluation of multiplex ligation-dependent probe amplification as a method for the detection of copy number abnormalities in B-cell precursor acute lymphoblastic leukemia. Genes Chromosomes Cancer 2010; 49: 1104–1113.

  • 28

    Mullighan CG, Su X, Zhang J, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med. 2009; 360: 470–480.

  • 29

    van der Veer A, Waanders E, Pieters R, et al. Independent prognostic value of BCR-ABL1-like signature and IKZF1 deletion, but not high CRLF2 expression, in children with B-cell precursor ALL. Blood 2013; 122: 2622–2629.

  • 30

    Harrison CJ, Moorman AV, Schwab C, et al. An international study of intrachromosomal amplification of chromosome 21 (iAMP21): cytogenetic characterization and outcome. Leukemia 2014; 28: 1015–1021.

  • 31

    Alpar D, de Jong D, Savola S, et al. MLPA is a powerful tool for detecting lymphoblastic transformation in chronic myeloid leukemia and revealing the clonal origin of relapse in pediatric acute lymphoblastic leukemia. Cancer Genet. 2012; 205: 465–469.

  • 32

    Waanders E, Scheijen B, van der Meer LT, et al. The origin and nature of tightly clustered BTG1 deletions in precursor B-cell acute lymphoblastic leukemia support a model of multiclonal evolution. PLoS Genet. 2012; 8: e1002533.

  • 33

    Braun M, Pastorczak A, Fendler W, et al. Biallelic loss of CDKN2A is associated with poor response to treatment in pediatric acute lymphoblastic leukemia. Leuk Lymphoma 2017; 58: 1162–1171.

  • 34

    Rohde M, Bonn BR, Zimmermann M, et al. Multiplex ligation-dependent probe amplification validates LOH6q analyses and enhances insight into chromosome 6q aberrations in pediatric T-cell lymphoblastic leukemia and lymphoma. Leuk Lymphoma 2015; 56: 1884–1887.

  • 35

    Richter-Pechanska P, Kunz JB, Hof J, et al. Identification of a genetically defined ultra-high-risk group in relapsed pediatric T-lymphoblastic leukemia. Blood Cancer J. 2017; 7: e523.

  • 36

    Kunz JB, Rausch T, Bandapalli OR, et al. Pediatric T-cell lymphoblastic leukemia evolves into relapse by clonal selection, acquisition of mutations and promoter hypomethylation. Haematologica 2015; 100: 1442–1450.

  • 37

    Reyes-Núñez V, Galo-Hooker E, Perez-Romano B, et al. Simultaneous use of multiplex ligation-dependent probe amplification assay and flow cytometric DNA ploidy analysis in patients with acute leukemia. Cytometry B Clin Cytom. 2018; 94: 172–181.

  • 38

    Vázquez-Reyes A, Bobadilla-Morales L, Barba-Barba C, et al. Aneuploidy identification in pre-B acute lymphoblastic leukemia patients at diagnosis by Multiplex Ligation-dependent Probe Amplification (MLPA). Leuk Res. 2017; 59: 117–123.

  • 39

    Pajor L, Szuhai K, Mehes G, et al. Combined metaphase, interphase cytogenetic, and flow cytometric analysis of DNA content of pediatric acute lymphoblastic leukemia. Cytometry 1998; 34: 87–94.

  • 40

    Szuhai K, Méhes G, Kosztolányi G, et al. Application of interphase cytogenetics for the determination of changes in the DNA content in acute childhood lymphoid leukemia. [Interfázis citogenetika alkalmazása a DNS-tartalom változásának megítélésére gyermekkori akut lymphoid leukaemiában.] Orv Hetil. 1997; 138: 3111–3119. [Hungarian]

  • 41

    Delfau-Larue MH, Klapper W, Berger F, et al. High-dose cytarabine does not overcome the adverse prognostic value of CDKN2A and TP53 deletions in mantle cell lymphoma. Blood 2015; 126: 604–611.

  • 42

    Alpar D, de Jong D, Holczer-Nagy Z, et al. Multiplex ligation-dependent probe amplification and fluorescence in situ hybridization are complementary techniques to detect cytogenetic abnormalities in multiple myeloma. Genes Chromosomes Cancer 2013; 52: 785–793.

  • 43

    Boyle EM, Proszek PZ, Kaiser MF, et al. A molecular diagnostic approach able to detect the recurrent genetic prognostic factors typical of presenting myeloma. Genes Chromosomes Cancer 2015; 54: 91–98.

  • 44

    Havranek O, Kleiblova P, Hojny J, et al. Association of germline CHEK2 gene variants with risk and prognosis of non-Hodgkin lymphoma. PLoS ONE 2015; 10: e0140819.

  • 45

    van der Sligte NE, Krumbholz M, Pastorczak A, et al. DNA copy number alterations mark disease progression in paediatric chronic myeloid leukaemia. Br J Haematol. 2014; 166: 250–253.

  • 46

    Donahue AC, Abdool AK, Gaur R, et al. Multiplex ligation-dependent probe amplification for detection of chromosomal abnormalities in myelodysplastic syndrome and acute myeloid leukemia. Leuk Res. 2011; 35: 1477–1483.

  • 47

    Konialis C, Savola S, Karapanou S, et al. Routine application of a novel MLPA-based first-line screening test uncovers clinically relevant copy number aberrations in haematological malignancies undetectable by conventional cytogenetics. Hematology 2014; 19: 217–224.

  • 48

    Kajtár B, Méhes G, Jáksó P, et al. Cytogenetic and molecular monitoring of chronic myeloid leukemia. [A krónikus myeloid leukaemia citogenetikai és molekuláris monitorozása.] Orv Hetil. 2006; 147: 963–970. [Hungarian]

  • 49

    Pajor L. Interphase cytogenetics in oncologic diagnosis. [Az interfázis citogenetika alkalmazási lehetőségei az onkopatológiai diagnosztikában.] Orv Hetil. 1998; 139: 2939–2946. [Hungarian]

  • 50

    Benard-Slagter A, Zondervan I, de Groot K, et al. Digital multiplex ligation-dependent probe amplification for detection of key copy number alterations in T- and B-cell lymphoblastic leukemia. J Mol Diagn. 2017; 19: 659–672.