Author: György Csaba1
View More View Less
  • 1 Semmelweis Egyetem, Általános Orvostudományi Kar, Budapest, Pf. 370, 1145
Open access

Absztrakt:

Az emberi élettartam a gazdaságilag fejlett országokban az utolsó száz évben jelentősen megnőtt, mintegy 40 évről 80 évre emelkedett. Ebben sok tényező játszott szerepet, de különösen az orvostudomány és a gyógyszerkutatás fejlődése, melyeket messzemenően kiegészített a szociális jólét és a szociális gondozás elterjedése. Az öregedésért elsősorban az egész szervezet alkotóinak kopása felelős, melyet endogén oxidációs folyamatok (szabad gyökök) váltanak ki, ezek ugyanis kárt tesznek a szervezet bármely sejtjében. A szervezet védekező- és irányítórendszereiben (immunrendszer, neuroendokrin rendszer) történő károsodás az egész szervezetre kihat, és annak leépülését (öregedés) és funkcióképtelenségét (halál) okozza. A szervezetnek vannak beépített védekezőmechanizmusai (például antioxidáns enzimek), de ezek működése kémiailag mesterségesen szennyezett korunkban nem elégséges, így külső támogatásra szorulunk. Ezt a támogatást biztosítják az antioxidánsok (mint A-, C-, E-vitaminok, rezveratrol) és a gyógyszerek (mint rapamicin, rapalógok, szelegilin, metformin stb.), melyek fontos szerepet játszanak az élettartam és az egészséges élettartam (jólléttartam) növelésében. Fontosnak látszik a kezelések korai megkezdése és a kombinációk alkalmazása. A cikk bemutatja a napjainkban használatos élettartam-növelőket, és tárgyalja hatásmechanizmusukat, valamint rámutat a fejlesztés útjaira a jövő érdekében. Orv Hetil. 2018; 159(41): 1655–1663.

  • 1

    Siegel JS. The demography and epidemiology of human health and aging. Springer Science + Business Media B. V., New York, NY, 2012; p. 686.

  • 2

    Beharka A, Redican S, Leka L, et al. Vitamin E status and immune function. Methods Enzymol. 1997; 282: 247–263.

  • 3

    Moriguchi S, Muraga M. Vitamin E and immunity. Vitam Horm. 2000; 59: 305–336.

  • 4

    Meydani SN, Barklund MP, Liu S, et al. Vitamin E supplementation enhances cell-mediated immunity in healthy elderly subjects. Am J Clin Nutr. 1990; 52: 557–563.

  • 5

    Wu D, Meydani SN. Age-associated changes in immune functions: impact of vitamin E intervention and the underlying mechanisms. Endocr Metab Immune Disord Drug Targets 2014; 14: 283–289.

  • 6

    Wu D, Meydani SN. Age-associated changes in immune and inflammatory responses: impact of vitamin E intervention. J Leukoc Biol. 2008; 84: 900–914.

  • 7

    Moriguchi S. The role of vitamin E in T-cell differentiation and the decrease of cellular immunity with aging. Biofactors 1998; 7: 77–86.

  • 8

    Meydani SM, Meydani M, Blumberg JB, et al. Assessment of the safety of supplementation with different amounts of vitamin E in healthy older adults. Am J Clin Nutr. 1998; 68: 311–318.

  • 9

    Yu BP, Kang CM, Han JS, et al. Can antioxidant supplementation slow the aging process? Biofactors 1998; 7: 93–101.

  • 10

    Chung E, Mo H, Wang S, et al. Potential roles of vitamin E in age-related changes in skeletal muscle health. Nutr Res. 2018; 49: 23–36.

  • 11

    Ochi H, Takeda S. The two sides of vitamin E supplementation. Gerontology 2015; 61: 319–326.

  • 12

    Hemila H, Kaprio J. Vitamin E may affect the life expectancy of men, depending on dietary vitamin C intake and smoking. Age Ageing 2011; 40: 215–220.

  • 13

    Church DF, Pryor WA. Free-radical chemistry of cigarette smoke and its toxicological implications. Environ Health Perspect 1985; 64: 111–126.

  • 14

    Barja G. Ascorbic acid and aging. Subcell Biochem. 1996; 25: 157–188.

  • 15

    Padayatty SJ, Katz A, Wang Y, et al. Vitamin C as an antioxidant: evaluation of its role in disease prevention. J Am Coll Nutr. 2003; 22: 18–35.

  • 16

    De Tullio MC. Beyond the antioxidant: the double life of vitamin C. Subcell Biochem. 2012; 56: 49–65.

  • 17

    Sorice A, Guerriero E, Capone F, et al. Ascorbic acid: its role in immune system and chronic inflammation diseases. Mini Rev Med Chem. 2014; 14: 444–452.

  • 18

    Monacelli F, Acquarone E, Giannotti C, et al. Vitamin C, aging and Alzheimer disease. Nutrients 2017; 9: pii: E670.

  • 19

    Bezlepkin VG, Sirota NP, Gaziev AI. The prolongation of survival in mice by dietary free antioxidants depends on their age by the start of feeding this diet. Mech Aging Dev. 1996; 92: 227–234.

  • 20

    Massie HR, Aiello VR, Doherty TJ. Dietary vitamin C improves the survival of mice. Gerontology 1984; 30: 371–375.

  • 21

    Oudemans-van Straaten HM, Spoelstra-de Man AM, de Waard MC. Vitamin C revisited. Crit Care 2014; 18: 460.

  • 22

    Harrison FE. A critical review of vitamin C for the prevention of age-related cognitive decline and Alzheimer’s disease. J Alzheimers Dis. 2012; 29: 711–726.

  • 23

    Mock JT, Chaudhari K, Sidhu A, et al. The influence of vitamins E and C and exercise of brain aging. Exp Gerontol. 2017; 94: 69–72.

  • 24

    Mecocci P, Polidori MC, Troiano L, et al. Plasma antioxidants and longevity: a study on healthy centenarians. Free Radic Biol Med. 2000; 28: 1243–1248.

  • 25

    Gershoff SN. Vitamin C (ascorbic acid): new roles, new requirements? Nutr Rev. 1993; 51: 313–326.

  • 26

    Palace VP, Khaper N, Qin Q, et al. Antioxidant potentials of vitamin A and carotenoids and their relevance to heart disease. Free Radic Biol Med. 1999; 26: 746–761.

  • 27

    Cutler RG. Carotenoids and retinol: their possible importance in determining longevity of primate species. Proc Natl Acad Sci USA 1984; 81: 7627–7631.

  • 28

    Hanck A. The biochemical and physiological role of vitamins A and E and their interactions. Acta Vitaminol Enzymol. 1985; 7(Suppl): 5–11.

  • 29

    Penn ND, Purkins L, Kelleher J. The effect of dietary supplementation with vitamins A, C and E on cell mediated immune function in elderly long-stay patients: a randomized, controlled trial. Age Ageing 1991; 20: 169–174.

  • 30

    Tuohimaa P. Vitamin D and aging. J Steroid Biochem Mol Biol. 2009; 114: 78–84.

  • 31

    Gonçalves de Carvalho CM, Ribeiro SM. Aging, low-grade systemic inflammation and vitamin D: a mini-review. Eur J Clin Nutr. 2017; 71: 434–440.

  • 32

    Mitsuo T, Nakao M. Vitamin D and anti-aging medicine. Clin Calcium 2008; 18: 980–985.

  • 33

    Frassinetti S, Bronzetti G, Caltavuturo L, et al. The role of zinc in life: a review. J Environ Pathol Toxicol Oncol. 2006; 25: 597–610.

  • 34

    Powell SR. The antioxidant properties of zinc. J Nutr. 2000; 130(Suppl): 1447S–1454S.

  • 35

    Wołonciej M, Milewska E, Roszkowska-Jakimiec W. Trace elements as an activator of antioxidant enzymes. Postepy Hig Med Dosw (Online). 2016; 70: 1483–1498.

  • 36

    Brewer GJ. Risks of copper and iron toxicity during aging in human. Chem Res Toxicol. 2010; 23: 319–326.

  • 37

    Polla BS. Therapy by taking away: the case of iron. Biochem Pharmacol. 1999; 57: 1345–1349.

  • 38

    Puertollano MA, Puertollano E, de Cienfuegos GA, et al. Dietary antioxidants: immunity and host defense. Curr Top Med Chem. 2011, 11: 1752–1766.

  • 39

    de la Lastra CA, Villegas I. Resveratrol as an anti-inflammatory and anti-aging agent: mechanisms and clinical implications. Mol Nutr Food Res. 2005; 49: 405–430.

  • 40

    Li J, Zhang CX, Liu YM, et al. A comparative study of anti-aging properties and mechanism: resveratrol and caloric restriction. Oncotarget 2017; 8: 65717–65729.

  • 41

    Kavas GO, Ayral PA, Elhan AH. The effects of resveratrol on oxidant/antioxidant sytems and their cofactors in rats. Adv Clin Exp Med. 2013; 22: 151–155.

  • 42

    Neves AR, Lucio M, Lima JL, et al. Resveratrol in medicinal chemistry: a critical review of its pharmacokinetics, drug-delivery, and membrane interactions. Curr Med Chem. 2012; 19: 1663–1681.

  • 43

    Das DK, Mukherjee S, Ray D. Erratum to: resveratrol and red vine, healthy heart and longevity. Heart Fail Rev. 2011; 16: 425–435.

  • 44

    Camins A, Junyent F, Verdaguer E, et al. Resveratrol: an antiaging drug with potential therapeutic applications in treating diseases. Pharmaceuticals 2009; 2: 194–205.

  • 45

    Testa G, Biasi F, Poli G, et al. Calorie restriction and dietary restriction mimetics: a strategy for improving healthy aging and longevity. Curr Pharm Des. 2014; 20: 2950–2977.

  • 46

    Orallo F. Trans-resveratrol: a magical elixir of eternal youth? Curr Med Chem. 2008; 15: 1887–1898.

  • 47

    Kaeberlein M. Resveratrol and rapamycin: are thay anti-aging drugs? Bioessays 2010; 32: 96–99.

  • 48

    Sergides C, Chirilă M, Silvestro L, et al. Bioavailability and safety study of resveratrol 500 mg tablets in healthy male and female volunteers. Exp Ther Med. 2016; 11: 164–170.

  • 49

    Chang J, Rimando A, Pallas M, et al. Low-dose pterostilbene, but not resveratrol, is a potent neuromodulator in aging and Alzheimer’s disease. Neurobiol Aging 2012; 33: 2062–2071.

  • 50

    Joseph JA, Fischer DR, Chend V, et al. Cellular and behavioral effects of stilbene resveratrol analogues: implications for reducing the deleterious effects of aging. J Agric Food Chem. 2008; 56: 10544–10551.

  • 51

    Dellinger RW, Santos SR, Morris M, et al. Repeat dose NRPT (nicotinamide riboside and pterostilbene) increases NAD+ levels in humans safely and sustainably: a randomized, double-blind, placebo-controlled study. NPJ Aging Mech Dis. 2017; 3: 17.

  • 52

    Imai S, Guarente L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 2014; 24: 464–471.

  • 53

    Connor AN. Could rapamycin help humans live longer? The Scientist March 1, 2018.

  • 54

    Anisimov VN. Metformin: do we finally have an anti-aging drug? Cell Cycle 2013; 12: 3483–3489.

  • 55

    Miklya I. The significance of selegiline/(–)-deprenyl after 50 years in research and therapy (1965–2015). Mol Psychiatry 2016; 21: 1499–1503.

  • 56

    Knoll J, Miklya I. Longevity study with low doses of selegiline/(–)-deprenyl and (2R)-1-(1-benzofuran-2-yl)-N-propylpentane-2-amine (BPAP). Life Sci. 2016; 167: 32–38.

  • 57

    Müller T, Kuhn W, Krüger R, et al. Selegiline immunstimulant – a novel mechanism of action? J Neural Transm Suppl. 1998; 52: 321–328.

  • 58

    Giblin W, Skinner ME, Lombard DB. Sirtuins: guardians of mammalian healthspan. Trends Genet. 2014; 30: 271–286.

  • 59

    Guarente L. Calorie restriction and sirtuins revisited. Genes Dev. 2013; 27: 2072–2785.

  • 60

    Bartke A, Darcy J. GH and ageing: pitfalls and new insights. Best Pract Res Clin Endocrinol Metab. 2017; 31: 113–125.

  • 61

    Allolio B, Arlt W. DHEA treatment: myth or reality? Trends Endocrinol Metab. 2002; 13: 288–294.

  • 62

    Nawata H, Yanase T, Goto K, et al. Mechanism of action of anti-aging DHEA-S and the replacement of DHEA-S. Mech Ageing Dev. 2002; 123: 1101–1106.

  • 63

    Rutkowski K, Sowa P, Rutkowska-Talipska J, et al. Dehydroepiandrosterone (DHEA): hypes and hopes. Drugs 2014; 74: 1195–1207.

  • 64

    Csaba G. The immunoendocrine thymus as a pacemaker of lifespan. Acta Microbiol Immunol Hung. 2016; 63: 139–158.

  • 65

    Csaba G. The role of pineal-thymus system in the regulation of autoimmunity, aging and lifespan. [A tobozmirigy-csecsemőmirigy rendszer szerepe az autoimmunitás, öregedés és élettartam szabályozásában.] Orv Hetil. 2016; 157: 1065–1070. [Hungarian]

  • 66

    Csaba G. The pineal regulation of the immune system: 40 years since the discovery. Acta Microbiol Immunol Hung. 2013; 60: 77–91.

  • 67

    Csaba G. The crisis of the hormonal system: the health-effects of endocrine disruptors. [A hormonális rendszer válsága: az endokrin diszruptorok egészségügyi hatásai.] Orv Hetil. 2017; 158: 1443–1451.

  • 68

    Reiter RJ. A radical detoxification processes during aging: the functional importance of melatonin. Aging 1995, 7: 340–351.

  • 69

    Csaba G. Immunity and longevity. Acta Microbiol Immunol Hung. 2018 July 3: 1–17. [Epub ahead of print]

  • 70

    Kim SM, Lim SM, Yoo JA, et al. Consumption of high-dose vitamin C (1250 mg per day) enhances functional and structural properties of serum lipoprotein to improve anti-oxidant, anti-atherosclerotic, and anti-aging effects via regulation of anti-inflammatory microRNA. Food Funct. 2015; 6: 3604–3612.

  • 71

    Csaba G. Vitamin-caused faulty perinatal hormonal imprinting and its consequences in adult age. Physiol Int. 2017; 104: 217–225.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 301 238 33
PDF Downloads 424 351 42