A modern transzplantációban a marginális szervek gépi perfúziója jelenthet egy lehetséges választ a várólistán lévő betegek növekvő halálozása és morbiditása miatt világszerte fokozódó szervigényre. A szervek beültetését megelőző aktív szervkonzerválás, a tárolás körülményeinek optimalizálása az utóbbi évek transzplantációs kutatásainak középpontjába került. A gépi perfúzió lehetőséget teremthet a szervek prezervációs károsodásának csökkentésére, rekondicionálására, a funkcionális paraméterek és biomarkerek beültetést megelőző értékelésére, a konzerválás időtartamának növelésére, valamint további terápiás eljárások egyidejű alkalmazására. Az új technológiák célja a transzplantációt követő szervfunkció javítása és a biztonsággal beültethető donorszervek számának növelése. A gépi perfúzió rövid és hosszú távú eredményeit multicentrikus vizsgálatok kutatják, a különböző módszerek előnyeiről számos kérdés maradt még megválaszolatlan. Közleményünkben összegezzük a gépi szervkonzerválás eddigi vívmányait, a közelmúlt legfontosabb preklinikai és klinikai kutatási eredményeit, melyek alapján a gépi perfúziót a transzplantáció újabb mérföldkövének tekinthetjük. Orv Hetil. 2018; 159(46): 1882–1890.
Clavien PA, Harvey PR, Strasberg SM. Preservation and reperfusion injuries in liver allografts. An overview and synthesis of current studies. Transplantation 1992; 53: 957–978.
Chouchani ET, Pell VR, Gaude E, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 2014; 515: 431–435
Barnard CN. The operation. A human cardiac transplant: an interim report of a successful operation performed at Groote Schuur Hospital, Cape Town. S Afr Med J. 1967; 41: 1271–1274.
A definition of irreversible coma: report of the Ad Hoc Committee of the Harvard Medical School to Examine the Definition of Brain Death. JAMA 1968; 205: 337–340.
Florack G, Sutherland DE, Heil J, et al. Long-term preservation of segmental pancreas autografts. Surgery 1982; 92: 260–269.
Cho YW, Terasaki PI, Cecka JM, et al. Transplantation of kidneys from donors whose hearts have stopped beating. N Engl J Med. 1998; 338: 221–225.
Lindell SL, Compagnon P, Mangino MJ, et al. UW solution for hypothermic machine perfusion of warm ischemic kidneys. Transplantation 2005; 79: 1358–1361.
Brasile L, Stubenitsky B, Booster M, et al. The cadaveric kidney and the organ shortage – a perspective review. Clin Transplant. 2001; 15: 369–374.
Frei U, Noeldeke J, Machold-Fabrizii V, et al. Prospective age-matching in elderly kidney transplant recipients – a 5-year analysis of the Eurotransplant Senior Program. Am J Transplant. 2008; 8: 50–57.
Perico N, Cattaneo D, Sayegh MH, et al. Delayed graft function in kidney transplantation. Lancet 2004; 364: 1814–1827.
Treckmann J, Moers C, Smits JM, et al. Machine perfusion versus cold storage for preservation of kidneys from expanded criteria donors after brain death. Transplant Int. 2011; 24: 548–554.
Szwarc I, Garrigue V, Delmas S, et al. Delayed graft function: a frequent but still unsolved problem in renal transplantation. Nephrol Ther. 2005; 1: 325–334.
Hamar M, Selzner M. Ex-vivo machine perfusion for kidney preservation. Curr Opin Organ Transplant. 2018; 23: 369–374.
Moers C, Smits JM, Maathuis MH, et al. Machine perfusion or cold storage in deceased-donor kidney transplantation. N Engl J Med. 2009; 360: 7–19.
Lam VW, Laurence JM, Richardson AJ, et al. Hypothermic machine perfusion in deceased donor kidney transplantation: a systematic review. J Surg Res. 2013; 180: 176–182.
O’Callaghan JM, Morgan RD, Knight SR, et al. Systematic review and meta-analysis of hypothermic machine perfusion versus static cold storage of kidney allografts on transplant outcomes. Br J Surg. 2013; 100: 991–1001.
Hameed AM, Pleass HC, Wong G, et al. Maximizing kidneys for transplantation using machine perfusion: from the past to the future: a comprehensive systematic review and meta-analysis. Medicine (Baltimore) 2016; 95: e5083.
Deng R, Gu G, Wang D, et al. Machine perfusion versus cold storage of kidneys derived from donation after cardiac death: a meta-analysis. PLoS ONE 2013; 8: e56368.
Jochmans I, Moers C, Smits JM, et al. Machine perfusion versus cold storage for the preservation of kidneys donated after cardiac death: a multicenter, randomized, controlled trial. Ann Surg. 2010; 252: 756–764.
Watson CJ, Wells AC, Roberts RJ, et al. Cold machine perfusion versus static cold storage of kidneys donated after cardiac death: a UK multicenter randomized controlled trial. Am J Transplant. 2010; 10: 1991–1999.
Moers C, Pirenne J, Paul A, et al. Machine perfusion or cold storage in deceased-donor kidney transplantation. N Engl J Med. 2012; 366: 770– 771.
Gallinat A, Moers C, Smits JM, et al. Machine perfusion versus static cold storage in expanded criteria donor kidney transplantation: 3-year follow-up data. Transpl Int. 2013; 26: E52–E53.
Jochmans I, Moers C, Smits JM, et al. The prognostic value of renal resistance during hypothermic machine perfusion of deceased donor kidneys. Am J Transplant. 2011; 11: 2214–2220.
de Vries EE, Hoogland ER, Winkens B, et al. Renovascular resistance of machine-perfused DCD kidneys is associated with primary nonfunction. Am J Transplant. 2011; 11: 2685–2691.
Bhangoo RS, Hall IE, Reese PP, et al. Deceased-donor kidney perfusate and urine biomarkers for kidney allograft outcomes: a systematic review. Nephrol Dial Transplant. 2012; 27: 3305–3314.
Moers C, Varnav OC, van Heurn E, et al. The value of machine perfusion perfusate biomarkers for predicting kidney transplant outcome. Transplantation 2010; 90: 966–973.
Hoogland ER, de Vries EE, Christiaans MH, et al. The value of machine perfusion biomarker concentration in DCD kidney transplantations. Transplantation 2013; 95: 603–610.
Parikh CR, Hall IE, Bhangoo RS, et al. Associations of perfusate biomarkers and pump parameters with delayed graft function and deceased donor kidney allograft function. Am J Transplant. 2016; 16: 1526–1539.
’t Hart NA, van der Plaats A, Faber A, et al. Oxygenation during hypothermic rat liver preservation: an in vitro slice study to demonstrate beneficial or toxic oxygenation effects. Liver Transpl. 2005; 11: 1403–1411.
Minor T, Sutschet K, Witzke O, et al. Prediction of renal function upon reperfusion by ex situ controlled oxygenated rewarming. Eur J Clin Invest. 2016; 46: 1024–1030.
Hoyer DP, Máthé Z, Gallinat A, et al. Controlled oxygenated rewarming of cold stored livers prior to transplantation: first clinical application of a new concept. Transplantation 2016; 100: 147–152.
von Horn C, Baba HA, Hannaert P, et al. Controlled oxygenated rewarming up to normothermia for pretransplant reconditioning of liver grafts. Clin Transplant. 2017; 31: e13101.
Bagul A, Hosgood SA, Kaushik M, et al. Experimental renal preservation by normothermic resuscitation perfusion with autologous blood. Br J Surg. 2008; 95: 111–118.
Hosgood SA, Barlow AD, Yates PJ, et al. A pilot study assessing the feasibility of a short period of normothermic preservation in an experimental model of non heart beating donor kidneys. J Surg Res. 2011; 171: 283–290.
Hosgood SA, Patel M, Nicholson ML. The conditioning effect of ex vivo normothermic perfusion in an experimental kidney model. J Surg Res. 2013; 182: 153–160.
Hosgood SA, Nicholson ML. First in man renal transplantation after ex vivo normothermic perfusion. Transplantation 2011; 92: 735–738.
Nicholson ML, Hosgood SA. Renal transplantation after ex vivo normothermic perfusion: the first clinical study. Am J Transplant. 2013; 13: 1246–1252.
Hosgood SA, Barlow AD, Hunter JP, et al. Ex vivo normothermic perfusion for quality assessment of marginal donor kidney transplants. Br J Surg. 2015; 102: 1433–1440.
Hosgood SA, Nicholson ML. An assessment of urinary biomarkers in a series of declined human kidneys measured during ex vivo normothermic kidney perfusion. Transplantation 2017; 101: 2120–2125.
Hosgood SA, Saeb-Parsy K, Hamed MO, et al. Successful transplantation of human kidneys deemed untranspantable but resuscitated by ex vivo normothermic machine perfusion. Am J Transplant. 2016; 16: 3282–3285.
Hosgood SA, Thompson E, Moore T, et al. Normothermic machine perfusion for the assessment and transplantation of declined human kidneys from donation after circulatory death donors. Br J Surg. 2018; 105: 388–394.
Increasing the number of transplants in the United States. 2016 in review. Available from: https://unos.org/about/annual-report/2016-annual-report/ [accessed: June 25, 2018].
Kim WR, Lake JR, Smith JM et al. OPTN/SRTR 2016 Annual Data Report: Liver. Am J Transplant. 2018; 18(Suppl 1): 172–253.
Nemes B, Gámán G, Polak WG et al. Extended-criteria donors in liver transplantation Part II: reviewing the impact of extended-criteria donors on the complications and outcomes of liver transplantation. Expert Rev Gastroenterol Hepatol. 2016; 10: 841–859.
Guarrera JV, Henry SD, Samstein B, et al. Hypothermic machine preservation facilitates successful transplantation of ‘orphan’ extended criteria donor livers. Am J Transplant. 2015; 15: 161–169.
Dutkowski P, Schlegel A, de Oliveira M, et al. HOPE for human liver grafts obtained from donors after cardiac death. J Hepatol. 2014; 60: 765–772.
Dutkowski P, Polak WG, Muiesan P, et al. First comparison of hypothermic oxygenated perfusion versus static cold storage of human donation after cardiac death liver transplants: an international-matched case analysis. Ann Surg. 2015; 262: 764–770.
de Rougemont O, Breitenstein S, Leskosek B, et al. One hour hypothermic oxygenated perfusion (HOPE) protects nonviable liver allografts donated after cardiac death. Ann Surg. 2009; 250: 674–683.
Brockmann J, Reddy S, Coussios C, et al. Normothermic perfusion: a new paradigm for organ preservation. Ann Surg. 2009; 250: 1–6.
Ravikumar R, Jassem W, Mergental H, et al. Liver transplantation after ex vivo normothermic machine preservation: a phase 1 (first-in-man) clinical trial. Am J Transplant. 2016; 16: 1779–1787.
Perera T, Mergental H, Stephenson B, et al. First human liver transplantation using a marginal allograft resuscitated by normothermic machine perfusion. Liver Transpl. 2016; 22: 120–124.
Mergental H, Perera MT, Laing RW et al. Transplantation of declined liver allografts following normothermic ex-situ evaluation. Am J Transplant. 2016; 16: 3235–3245.
Selzner M, Goldaracena N, Echeverri J, et al. Normothermic ex vivo liver perfusion using steen solution as perfusate for human liver transplantation: first North American results. Liver Transpl. 2016; 22: 1501–1508.
Nasralla D, Coussios CC, Mergental H, et al. Consortium for Organ Preservation in Europe. A randomized trial of normothermic preservation in liver transplantation. Nature 2018; 557: 50–56.
Allard MA, Castro-Benitez C, Imai K, et al. Suitability of livers for transplantation when treated by normothermic machine perfusion. Clin Transplant. 2018; 32: e13256.
Sutton ME, op den Dries S, Karimian N, et al. Criteria for viability assessment of discarded human donor livers during ex vivo normothermic machine perfusion. PLoS ONE 2014; 9: e110642.
Jamieson RW, Zilvetti M, Roy D, et al. Hepatic steatosis and normothermic perfusion–preliminary experiments in a porcine model. Transplantation 2011; 92: 289–295.
Nagrath D, Xu H, Tanimura Y, et al. Metabolic preconditioning of donor organs: defatting fatty livers by normothermic perfusion ex vivo. Metab Eng. 2009; 11: 274–283.
Florack G, Sutherland DE, Heil J, et al. Preservation of canine segmental pancreatic autografts: cold storage versus pulsatile machine perfusion. J Surg Res. 1983; 34: 493–504.
Babkin BP, Starling EH. A method for the study of the perfused pancreas. J Physiol. 1926; 61: 245–247.
Ali F, Dua A, Cronin DC. Changing paradigms in organ preservation and resuscitation. Curr Opin Organ Transplant. 2015; 20: 152–158.
Stratta RJ, Fridell JA, Gruessner AC, et al. Pancreas transplantation: a decade of decline. Curr Opin Organ Transplant. 2016; 21: 386–392.
Stratta RJ, Gruessner AC, Odorico JS, et al. Pancreas transplantation: an alarming crisis in confidence. Am J Transplant. 2016; 16: 2556–2562.
Agrawal A, So P, Penman A. Limited penetration of perfluorocarbon in porcine pancreas preserved by two-layer method with (19)fluorine magnetic resonance spectroscopy and headspace gas chromatography. Cell Transplant. 2010; 19: 1021–1029.
Kawamura T, Kuroda Y, Suzuki Y, et al. Seventy-two-hour preservation of the canine pancreas by the two-layer (EuroCollins’ solution/perfluorochemical) cold storage method. Transplantation 1989; 47: 776–778.
Matsumoto S, Kandaswamy R, Sutherland D. Clinical application of the two-layer (University of Wisconsin solution/peflurochemical plus O2) method of pancreas preservation before transplantation. Transplantation 2000; 70: 771–774.
Taylor MJ, Baicu S, Leman B. Twenty-four hour hypothermic machine perfusion preservation of porcine pancreas facilitates processing for islet isolation. Transplant Proc. 2008; 40: 480–482.
Karcz M, Cook HT, Sibbons P, et al. An ex-vivo model for hypothermic pulsatile perfusion of porcine pancreata: haemodynamic and morphologic charateristics. Exp Clin Transplant. 2010; 8: 55–60.
Cantarovich D, Renaudin K, Branchereau J. Preservation of human pancreas with hypothermic machine perfusion. TTS Aug 2016.
Leemkuil M, Engelse M, Ploeg R, et al. Hypothermic machine perfusion improves the quality of marginal donor pancreata. Am J Transplant. 2015; 15 (Suppl 3). https://atcmeetingabstracts.com/abstract/hypothermic-machine-perfusion-improves-the-quality-of-marginal-donor-pancreata/ [accessed: September 26, 2018].
Barlow AD, Hamed MO, Mallon DH, et al. Use of ex vivo normothermic perfusion for quality assessment of discarded human donor pancreases. Am J Transplant. 2015; 15: 2475–2482.
Dholakia S, Royston E, Sharples EJ, et al. Preserving and perfusing the allograft pancreas: past, present, and future. Transplant Rev (Orlando). 2018; 32: 127–131.
Pareta R, Sanders B, Babbar P, et al. Immunoisolation: where regenerative medicine meets solid organ transplantation. Expert Rev Clin Immunol. 2012; 8: 685–692.
Hamaoui K, Aftab A, Gowers S, et al. An ex vivo comparison of adenosine and lidocaine solution and University of Wisconsin solution for hypothermic machine perfusion of porcine kidneys: potential for development. J Surg Res. 2017; 208: 219–229.
Hitchman E, Hitchman RB, King LA. BacMam delivery of a protective gene to reduce renal ischemia-reperfusion injury. Hum Gene Ther. 2017; 28: 747–756.
Hamaoui K, Gowers S, Boutelle M, et al. Organ pretreatment with cytotopic endothelial localizing peptides to ameliorate microvascular thrombosis and perfusion deficits in ex vivo renal hemoreperfusion models. Transplantation 2016; 100: e128–e139.
Gregorini M, Corradetti V, Pattonieri EF, et al. Perfusion of isolated rat kidney with mesenchymal stromal cells/extracellular vesicles prevent ischaemic injury. J Cell Mol Med. 2017; 21: 3381–3393.