View More View Less
  • 1 Semmelweis Egyetem, Általános Orvostudományi Kar, Budapest, Baross u. 23., 1082
  • 2 Semmelweis Egyetem, Budapest
Open access

Absztrakt:

A modern transzplantációban a marginális szervek gépi perfúziója jelenthet egy lehetséges választ a várólistán lévő betegek növekvő halálozása és morbiditása miatt világszerte fokozódó szervigényre. A szervek beültetését megelőző aktív szervkonzerválás, a tárolás körülményeinek optimalizálása az utóbbi évek transzplantációs kutatásainak középpontjába került. A gépi perfúzió lehetőséget teremthet a szervek prezervációs károsodásának csökkentésére, rekondicionálására, a funkcionális paraméterek és biomarkerek beültetést megelőző értékelésére, a konzerválás időtartamának növelésére, valamint további terápiás eljárások egyidejű alkalmazására. Az új technológiák célja a transzplantációt követő szervfunkció javítása és a biztonsággal beültethető donorszervek számának növelése. A gépi perfúzió rövid és hosszú távú eredményeit multicentrikus vizsgálatok kutatják, a különböző módszerek előnyeiről számos kérdés maradt még megválaszolatlan. Közleményünkben összegezzük a gépi szervkonzerválás eddigi vívmányait, a közelmúlt legfontosabb preklinikai és klinikai kutatási eredményeit, melyek alapján a gépi perfúziót a transzplantáció újabb mérföldkövének tekinthetjük. Orv Hetil. 2018; 159(46): 1882–1890.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Clavien PA, Harvey PR, Strasberg SM. Preservation and reperfusion injuries in liver allografts. An overview and synthesis of current studies. Transplantation 1992; 53: 957–978.

  • 2

    Chouchani ET, Pell VR, Gaude E, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 2014; 515: 431–435

  • 3

    Barnard CN. The operation. A human cardiac transplant: an interim report of a successful operation performed at Groote Schuur Hospital, Cape Town. S Afr Med J. 1967; 41: 1271–1274.

  • 4

    A definition of irreversible coma: report of the Ad Hoc Committee of the Harvard Medical School to Examine the Definition of Brain Death. JAMA 1968; 205: 337–340.

  • 5

    Florack G, Sutherland DE, Heil J, et al. Long-term preservation of segmental pancreas autografts. Surgery 1982; 92: 260–269.

  • 6

    Cho YW, Terasaki PI, Cecka JM, et al. Transplantation of kidneys from donors whose hearts have stopped beating. N Engl J Med. 1998; 338: 221–225.

  • 7

    Lindell SL, Compagnon P, Mangino MJ, et al. UW solution for hypothermic machine perfusion of warm ischemic kidneys. Transplantation 2005; 79: 1358–1361.

  • 8

    Brasile L, Stubenitsky B, Booster M, et al. The cadaveric kidney and the organ shortage – a perspective review. Clin Transplant. 2001; 15: 369–374.

  • 9

    Frei U, Noeldeke J, Machold-Fabrizii V, et al. Prospective age-matching in elderly kidney transplant recipients – a 5-year analysis of the Eurotransplant Senior Program. Am J Transplant. 2008; 8: 50–57.

  • 10

    Perico N, Cattaneo D, Sayegh MH, et al. Delayed graft function in kidney transplantation. Lancet 2004; 364: 1814–1827.

  • 11

    Treckmann J, Moers C, Smits JM, et al. Machine perfusion versus cold storage for preservation of kidneys from expanded criteria donors after brain death. Transplant Int. 2011; 24: 548–554.

  • 12

    Szwarc I, Garrigue V, Delmas S, et al. Delayed graft function: a frequent but still unsolved problem in renal transplantation. Nephrol Ther. 2005; 1: 325–334.

  • 13

    Hamar M, Selzner M. Ex-vivo machine perfusion for kidney preservation. Curr Opin Organ Transplant. 2018; 23: 369–374.

  • 14

    Moers C, Smits JM, Maathuis MH, et al. Machine perfusion or cold storage in deceased-donor kidney transplantation. N Engl J Med. 2009; 360: 7–19.

  • 15

    Lam VW, Laurence JM, Richardson AJ, et al. Hypothermic machine perfusion in deceased donor kidney transplantation: a systematic review. J Surg Res. 2013; 180: 176–182.

  • 16

    O’Callaghan JM, Morgan RD, Knight SR, et al. Systematic review and meta-analysis of hypothermic machine perfusion versus static cold storage of kidney allografts on transplant outcomes. Br J Surg. 2013; 100: 991–1001.

  • 17

    Hameed AM, Pleass HC, Wong G, et al. Maximizing kidneys for transplantation using machine perfusion: from the past to the future: a comprehensive systematic review and meta-analysis. Medicine (Baltimore) 2016; 95: e5083.

  • 18

    Deng R, Gu G, Wang D, et al. Machine perfusion versus cold storage of kidneys derived from donation after cardiac death: a meta-analysis. PLoS ONE 2013; 8: e56368.

  • 19

    Jochmans I, Moers C, Smits JM, et al. Machine perfusion versus cold storage for the preservation of kidneys donated after cardiac death: a multicenter, randomized, controlled trial. Ann Surg. 2010; 252: 756–764.

  • 20

    Watson CJ, Wells AC, Roberts RJ, et al. Cold machine perfusion versus static cold storage of kidneys donated after cardiac death: a UK multicenter randomized controlled trial. Am J Transplant. 2010; 10: 1991–1999.

  • 21

    Moers C, Pirenne J, Paul A, et al. Machine perfusion or cold storage in deceased-donor kidney transplantation. N Engl J Med. 2012; 366: 770– 771.

  • 22

    Gallinat A, Moers C, Smits JM, et al. Machine perfusion versus static cold storage in expanded criteria donor kidney transplantation: 3-year follow-up data. Transpl Int. 2013; 26: E52–E53.

  • 23

    Jochmans I, Moers C, Smits JM, et al. The prognostic value of renal resistance during hypothermic machine perfusion of deceased donor kidneys. Am J Transplant. 2011; 11: 2214–2220.

  • 24

    de Vries EE, Hoogland ER, Winkens B, et al. Renovascular resistance of machine-perfused DCD kidneys is associated with primary nonfunction. Am J Transplant. 2011; 11: 2685–2691.

  • 25

    Bhangoo RS, Hall IE, Reese PP, et al. Deceased-donor kidney perfusate and urine biomarkers for kidney allograft outcomes: a systematic review. Nephrol Dial Transplant. 2012; 27: 3305–3314.

  • 26

    Moers C, Varnav OC, van Heurn E, et al. The value of machine perfusion perfusate biomarkers for predicting kidney transplant outcome. Transplantation 2010; 90: 966–973.

  • 27

    Hoogland ER, de Vries EE, Christiaans MH, et al. The value of machine perfusion biomarker concentration in DCD kidney transplantations. Transplantation 2013; 95: 603–610.

  • 28

    Parikh CR, Hall IE, Bhangoo RS, et al. Associations of perfusate biomarkers and pump parameters with delayed graft function and deceased donor kidney allograft function. Am J Transplant. 2016; 16: 1526–1539.

  • 29

    ’t Hart NA, van der Plaats A, Faber A, et al. Oxygenation during hypothermic rat liver preservation: an in vitro slice study to demonstrate beneficial or toxic oxygenation effects. Liver Transpl. 2005; 11: 1403–1411.

  • 30

    Minor T, Sutschet K, Witzke O, et al. Prediction of renal function upon reperfusion by ex situ controlled oxygenated rewarming. Eur J Clin Invest. 2016; 46: 1024–1030.

  • 31

    Hoyer DP, Máthé Z, Gallinat A, et al. Controlled oxygenated rewarming of cold stored livers prior to transplantation: first clinical application of a new concept. Transplantation 2016; 100: 147–152.

  • 32

    von Horn C, Baba HA, Hannaert P, et al. Controlled oxygenated rewarming up to normothermia for pretransplant reconditioning of liver grafts. Clin Transplant. 2017; 31: e13101.

  • 33

    Bagul A, Hosgood SA, Kaushik M, et al. Experimental renal preservation by normothermic resuscitation perfusion with autologous blood. Br J Surg. 2008; 95: 111–118.

  • 34

    Hosgood SA, Barlow AD, Yates PJ, et al. A pilot study assessing the feasibility of a short period of normothermic preservation in an experimental model of non heart beating donor kidneys. J Surg Res. 2011; 171: 283–290.

  • 35

    Hosgood SA, Patel M, Nicholson ML. The conditioning effect of ex vivo normothermic perfusion in an experimental kidney model. J Surg Res. 2013; 182: 153–160.

  • 36

    Hosgood SA, Nicholson ML. First in man renal transplantation after ex vivo normothermic perfusion. Transplantation 2011; 92: 735–738.

  • 37

    Nicholson ML, Hosgood SA. Renal transplantation after ex vivo normothermic perfusion: the first clinical study. Am J Transplant. 2013; 13: 1246–1252.

  • 38

    Hosgood SA, Barlow AD, Hunter JP, et al. Ex vivo normothermic perfusion for quality assessment of marginal donor kidney transplants. Br J Surg. 2015; 102: 1433–1440.

  • 39

    Hosgood SA, Nicholson ML. An assessment of urinary biomarkers in a series of declined human kidneys measured during ex vivo normothermic kidney perfusion. Transplantation 2017; 101: 2120–2125.

  • 40

    Hosgood SA, Saeb-Parsy K, Hamed MO, et al. Successful transplantation of human kidneys deemed untranspantable but resuscitated by ex vivo normothermic machine perfusion. Am J Transplant. 2016; 16: 3282–3285.

  • 41

    Hosgood SA, Thompson E, Moore T, et al. Normothermic machine perfusion for the assessment and transplantation of declined human kidneys from donation after circulatory death donors. Br J Surg. 2018; 105: 388–394.

  • 42

    Increasing the number of transplants in the United States. 2016 in review. Available from: https://unos.org/about/annual-report/2016-annual-report/ [accessed: June 25, 2018].

  • 43

    Kim WR, Lake JR, Smith JM et al. OPTN/SRTR 2016 Annual Data Report: Liver. Am J Transplant. 2018; 18(Suppl 1): 172–253.

  • 44

    Nemes B, Gámán G, Polak WG et al. Extended-criteria donors in liver transplantation Part II: reviewing the impact of extended-criteria donors on the complications and outcomes of liver transplantation. Expert Rev Gastroenterol Hepatol. 2016; 10: 841–859.

  • 45

    Guarrera JV, Henry SD, Samstein B, et al. Hypothermic machine preservation facilitates successful transplantation of ‘orphan’ extended criteria donor livers. Am J Transplant. 2015; 15: 161–169.

  • 46

    Dutkowski P, Schlegel A, de Oliveira M, et al. HOPE for human liver grafts obtained from donors after cardiac death. J Hepatol. 2014; 60: 765–772.

  • 47

    Dutkowski P, Polak WG, Muiesan P, et al. First comparison of hypothermic oxygenated perfusion versus static cold storage of human donation after cardiac death liver transplants: an international-matched case analysis. Ann Surg. 2015; 262: 764–770.

  • 48

    de Rougemont O, Breitenstein S, Leskosek B, et al. One hour hypothermic oxygenated perfusion (HOPE) protects nonviable liver allografts donated after cardiac death. Ann Surg. 2009; 250: 674–683.

  • 49

    Brockmann J, Reddy S, Coussios C, et al. Normothermic perfusion: a new paradigm for organ preservation. Ann Surg. 2009; 250: 1–6.

  • 50

    Ravikumar R, Jassem W, Mergental H, et al. Liver transplantation after ex vivo normothermic machine preservation: a phase 1 (first-in-man) clinical trial. Am J Transplant. 2016; 16: 1779–1787.

  • 51

    Perera T, Mergental H, Stephenson B, et al. First human liver transplantation using a marginal allograft resuscitated by normothermic machine perfusion. Liver Transpl. 2016; 22: 120–124.

  • 52

    Mergental H, Perera MT, Laing RW et al. Transplantation of declined liver allografts following normothermic ex-situ evaluation. Am J Transplant. 2016; 16: 3235–3245.

  • 53

    Selzner M, Goldaracena N, Echeverri J, et al. Normothermic ex vivo liver perfusion using steen solution as perfusate for human liver transplantation: first North American results. Liver Transpl. 2016; 22: 1501–1508.

  • 54

    Nasralla D, Coussios CC, Mergental H, et al. Consortium for Organ Preservation in Europe. A randomized trial of normothermic preservation in liver transplantation. Nature 2018; 557: 50–56.

  • 55

    Allard MA, Castro-Benitez C, Imai K, et al. Suitability of livers for transplantation when treated by normothermic machine perfusion. Clin Transplant. 2018; 32: e13256.

  • 56

    Sutton ME, op den Dries S, Karimian N, et al. Criteria for viability assessment of discarded human donor livers during ex vivo normothermic machine perfusion. PLoS ONE 2014; 9: e110642.

  • 57

    Jamieson RW, Zilvetti M, Roy D, et al. Hepatic steatosis and normothermic perfusion–preliminary experiments in a porcine model. Transplantation 2011; 92: 289–295.

  • 58

    Nagrath D, Xu H, Tanimura Y, et al. Metabolic preconditioning of donor organs: defatting fatty livers by normothermic perfusion ex vivo. Metab Eng. 2009; 11: 274–283.

  • 59

    Florack G, Sutherland DE, Heil J, et al. Preservation of canine segmental pancreatic autografts: cold storage versus pulsatile machine perfusion. J Surg Res. 1983; 34: 493–504.

  • 60

    Babkin BP, Starling EH. A method for the study of the perfused pancreas. J Physiol. 1926; 61: 245–247.

  • 61

    Ali F, Dua A, Cronin DC. Changing paradigms in organ preservation and resuscitation. Curr Opin Organ Transplant. 2015; 20: 152–158.

  • 62

    Stratta RJ, Fridell JA, Gruessner AC, et al. Pancreas transplantation: a decade of decline. Curr Opin Organ Transplant. 2016; 21: 386–392.

  • 63

    Stratta RJ, Gruessner AC, Odorico JS, et al. Pancreas transplantation: an alarming crisis in confidence. Am J Transplant. 2016; 16: 2556–2562.

  • 64

    Agrawal A, So P, Penman A. Limited penetration of perfluorocarbon in porcine pancreas preserved by two-layer method with (19)fluorine magnetic resonance spectroscopy and headspace gas chromatography. Cell Transplant. 2010; 19: 1021–1029.

  • 65

    Kawamura T, Kuroda Y, Suzuki Y, et al. Seventy-two-hour preservation of the canine pancreas by the two-layer (EuroCollins’ solution/perfluorochemical) cold storage method. Transplantation 1989; 47: 776–778.

  • 66

    Matsumoto S, Kandaswamy R, Sutherland D. Clinical application of the two-layer (University of Wisconsin solution/peflurochemical plus O2) method of pancreas preservation before transplantation. Transplantation 2000; 70: 771–774.

  • 67

    Taylor MJ, Baicu S, Leman B. Twenty-four hour hypothermic machine perfusion preservation of porcine pancreas facilitates processing for islet isolation. Transplant Proc. 2008; 40: 480–482.

  • 68

    Karcz M, Cook HT, Sibbons P, et al. An ex-vivo model for hypothermic pulsatile perfusion of porcine pancreata: haemodynamic and morphologic charateristics. Exp Clin Transplant. 2010; 8: 55–60.

  • 69

    Cantarovich D, Renaudin K, Branchereau J. Preservation of human pancreas with hypothermic machine perfusion. TTS Aug 2016.

  • 70

    Leemkuil M, Engelse M, Ploeg R, et al. Hypothermic machine perfusion improves the quality of marginal donor pancreata. Am J Transplant. 2015; 15 (Suppl 3). https://atcmeetingabstracts.com/abstract/hypothermic-machine-perfusion-improves-the-quality-of-marginal-donor-pancreata/ [accessed: September 26, 2018].

  • 71

    Barlow AD, Hamed MO, Mallon DH, et al. Use of ex vivo normothermic perfusion for quality assessment of discarded human donor pancreases. Am J Transplant. 2015; 15: 2475–2482.

  • 72

    Dholakia S, Royston E, Sharples EJ, et al. Preserving and perfusing the allograft pancreas: past, present, and future. Transplant Rev (Orlando). 2018; 32: 127–131.

  • 73

    Pareta R, Sanders B, Babbar P, et al. Immunoisolation: where regenerative medicine meets solid organ transplantation. Expert Rev Clin Immunol. 2012; 8: 685–692.

  • 74

    Hamaoui K, Aftab A, Gowers S, et al. An ex vivo comparison of adenosine and lidocaine solution and University of Wisconsin solution for hypothermic machine perfusion of porcine kidneys: potential for development. J Surg Res. 2017; 208: 219–229.

  • 75

    Hitchman E, Hitchman RB, King LA. BacMam delivery of a protective gene to reduce renal ischemia-reperfusion injury. Hum Gene Ther. 2017; 28: 747–756.

  • 76

    Hamaoui K, Gowers S, Boutelle M, et al. Organ pretreatment with cytotopic endothelial localizing peptides to ameliorate microvascular thrombosis and perfusion deficits in ex vivo renal hemoreperfusion models. Transplantation 2016; 100: e128–e139.

  • 77

    Gregorini M, Corradetti V, Pattonieri EF, et al. Perfusion of isolated rat kidney with mesenchymal stromal cells/extracellular vesicles prevent ischaemic injury. J Cell Mol Med. 2017; 21: 3381–3393.