View More View Less
  • 1 Debreceni Egyetem, Általános Orvostudományi Kar, Debrecen, Móricz Zs. krt 22., 4032
  • 2 Debreceni Egyetem, Általános Orvostudományi Kar, Debrecen
  • 3 Pécsi Egyetem, Általános Orvostudományi Kar, Pécs
  • 4 Országos Vérellátó Szolgálat, Budapest
Open access

Absztrakt:

A veseátültetés utáni hosszú távú túlélést befolyásoló tényezők egyike az antitestmediált rejekció (ABMR). A szerzők áttekintést nyújtanak az ABMR jelenleg ismert diagnosztikai és kezelési hátteréről. A Debreceni és a Pécsi Egyetem transzplantációs központjainak együttműködése alapján áttekintik a 2013 és 2017 közötti időszakban végzett veseátültetések után kialakult korai ABMR-eseteket és a releváns közleményeket. A két központban összesen 454 veseátültetés történt. ABMR-diagnózist összesen 18 esetben állítottunk fel (4%). Minden esetben perkután biopszia történt. A betegek közül 22% volt primer, 78% retranszplantált eset. Az átlagéletkor 51,2 ± 6 év volt. A veseátültetés után az ABMR diagnózisáig eltelt idő 15,4 ± 22,1 hónap volt. A C4d-pozitivitást 7 esetben sikerült igazolni, ami az összes ABMR-eset 39%-a. Összesen 16 betegnél történt szteroidbolus + intravénás immunglobulin (IVIG) + plazmaferézis (PF) kezelés, a 6 debreceni beteg közül 5 kapott ezenfelül rituximabot és 1 alemtuzumabot. 9 (47,4%) beteg él működő beültetett vesével, 4 beteg meghalt (21%), és 5 került vissza művesekezelésre graftvesztés miatt (31%). Az ABMR veszélyes szövődmény a veseátültetés után. A diagnosztikus kritériumok sokáig változtak. A gold standard a szövettan. A C4d-esetekben is lehet akcelerált ABMR. A retranszplantáción átesett fiatalabb, preformált donorspecifikus antitesttel (DSA) jelentkező betegek és azok, akik EC-donorból kapnak vesét, kockázati csoportot jelentenek. A de novo DSA megjelenése, az átlagos fluoreszcenciaintenzitás (MFI) kinetikája lehet az a pont, amely felhívja a figyelmet az akut ABMR veszélyére. A rituximab hatékonyságát megkérdőjelezik, az új gyógyszerekkel (belatacept, bortezomib vagy ekulizumab) még nincs elég tapasztalat, vagy rendkívül drágák. Saját anyagunkban a 40% feletti gyógyulási arány kiemelkedően jó eredmény. Orv Hetil. 2018; 159(46): 1913–1929.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Nemes B, Fedor R, Kanyári Z, et al. First outcomes, since being full member of Eurotransplant. A single center experience of cadaveric kidney transplantation. [Eredményeink a teljes jogú Eurotransplant-tagság óta. A Debreceni Vesetranszplantációs Központ tapasztalatai.] Orv Hetil. 2016; 157: 925–937. [Hungarian]

  • 2

    Zádori G, Kovács DÁ, Fedor R, et al. Results of expanded-criteria donor kidneys: a single-center experience in Hungary. Transplant Proc. 2015; 47: 2189–2191.

  • 3

    Zádori G, Tarjányi V, P Szabó R, et al. Analysis of donor scoring systems in a single Hungarian transplant centre. [Donorszelekciós kritériumok vizsgálata a debreceni veseátültetési programban.] Orv Hetil. 2016; 157: 946–955. [Hungarian]

  • 4

    Németh N, Tóth E, Nemes B, et al. Agents targeting ischemia-reperfusion injury. In: Huifang C, Shiguang Q. (eds.) Current immunosuppressive therapy in organ transplantation. Nova Science Publishers, New York, NY, 2015; pp. 487–533.

  • 5

    Wan SS, Ying TD, Wyburn K, et al. The treatment of antibody-mediated rejection in kidney transplantation: an updated systematic review and meta-analysis. Transplantation 2018; 102: 557–568.

  • 6

    Remport A, Ivanyi B, Mathe Z, et al. Better understanding of transplant glomerulopathy secondary to chronic antibody-mediated rejection. Nephrol Dial Transplant. 2015; 30: 1825–1833.

  • 7

    Nankivell BJ, Alexander SI. Rejection of the kidney allograft. N Eng J Med. 2010; 363: 1451–1462.

  • 8

    van de Berg PJ, Hoevenaars EC, Yong SL, et al. Circulating lymphocyte subsets in different clinical situations after renal transplantation. Immunology 2012; 136: 198–207.

  • 9

    Tebbe B, Wilde B, Ye Z, et al. Renal transplant recipients treated with calcineurin-inhibitors lack circulating immature transitional CD19+CD24hiCD38hi regulatory B-lymphocytes. PLoS ONE 2016; 11: e0153170.

  • 10

    Latorre I, Esteve-Sole A, Redondo D, et al. Calcineurin and mTOR inhibitors have opposing effects on regulatory T cells while reducing regulatory B cell populations in kidney transplant recipients. Transpl Immunol. 2016; 35: 1–6.

  • 11

    Ng YW, Singh M, Sarwal MM. Antibody-mediated rejection in pediatric kidney transplantation: pathophysiology, diagnosis, and management. Drugs 2015; 75: 455–472.

  • 12

    Gombos P, Opelz G, Scherer S, et al. Influence of test technique on sensitization status of patients on the kidney transplant waiting list. Am J Transplant. 2013; 13: 2075–2082.

  • 13

    Crespo M, Torio A, Mas V, et al. Clinical relevance of pretransplant anti-HLA donor-specific antibodies: does C1q-fixation matter? Transpl Immunol. 2013; 29: 28–33.

  • 14

    Sicard A, Ducreux S, Rabeyrin M, et al. Detection of C3d-binding donor-specific anti-HLA antibodies at diagnosis of humoral rejection predicts renal graft loss. J Am Soc Nephrol 2015; 26: 457–467.

  • 15

    Opelz G. Non-HLA transplantation immunity revealed by lymphocytotoxic antibodies. Lancet 2005; 365: 1570–1576.

  • 16

    Garg N, Samaniego MD, Clark D, et al. Defining the phenotype of antibody-mediated rejection in kidney transplantation: advances in diagnosis of antibody injury. Transplant Rev (Orlando). 2017; 31: 257–267.

  • 17

    Stegall MD, Raghavaiah S, Gloor JM. The (re)emergence of B cells in organ transplantation. Curr Opin Organ Transplant. 2010; 15: 451–455.

  • 18

    Lan JH, Tinckam K. Clinical utility of complement dependent assays in kidney transplantation. Transplantation 2018; 102(1S): S14–S22.

  • 19

    Karahan GE, Claas FH, Heidt S. B cell immunity in solid organ transplantation. Front Immunol. 2017; 7: 686.

  • 20

    Courant M, Visentin J, Linares G, et al. The disappointing contribution of anti-human leukocyte antigen donor-specific antibodies characteristics for predicting allograft loss. Nephrol Dial Transplant. 2018; 33: 1853–1863.

  • 21

    De Serres SA, Mfarrej BG, Magee CN. Immune profile of pediatric renal transplant recipients following alemtuzumab induction. J Am Soc Nephrol. 2012; 23: 174–182.

  • 22

    Todeschini M, Cortinovis M, Perico N. In kidney transplant patients, alemtuzumab but not basiliximab/low-dose rabbit anti-thymocyte globulin induces B cell depletion and regeneration, which associates with a high incidence of de novo donor-specific anti-HLA antibody development. J Immunol. 2013; 191: 2818–2828.

  • 23

    Sigdel TK, Vitalone MJ, Tran TQ, et al. A rapid noninvasive assay for the detection of renal transplant injury. Transplantation 2013; 96: 97–101.

  • 24

    Kohei J, Ishida H, Tanabe K, et al. Neutrophil gelatinase-associated lipocalin is a sensitive biomarker for the early diagnosis of acute rejection after living-donor kidney transplantation. Int Urol Nephrol. 2013; 45: 1159–1167.

  • 25

    Heng B, Li Y, Shi L, et al. A meta-analysis of the significance of granzyme B and perforin in noninvasive diagnosis of acute rejection after kidney transplantation. Transplantation 2015; 99: 1477–1486.

  • 26

    Wulff H, Knaus HG, Pennington M, et al. K+ channel expression during B cell differentiation: implications for immunomodulation and autoimmunity. J Immunol. 2004; 173: 776–786.

  • 27

    Han S, Yi H, Yin SJ, et al. Structural basis of a potent peptide inhibitor designed for Kv1.3 channel, a therapeutic target of autoimmune disease. J Biol Chem. 2008; 283: 19058–19065.

  • 28

    Bezerra EL, Vilar MJ, da Trindade Neto PB, et al. Double-blind, randomized, controlled clinical trial of clofazimine compared with chloroquine in patients with systemic lupus erythematosus. Arthritis Rheum. 2005; 52: 3073–3078.

  • 29

    Chuaprapaisilp T, Piamphongsant T. Treatment of pustular psoriasis with clofazimine. Br J Dermatol. 1978; 99: 303–305.

  • 30

    Selby W, Pavli P, Crotty B, et al. Two-year combination antibiotic therapy with clarithromycin, rifabutin, and clofazimine for Crohn’s disease. Gastroenterology 2007; 132: 2313–2319.

  • 31

    Roedder S, Sigdel T, Salomonis N, et al. The kSORT assay to detect renal transplant patients at high risk for acute rejection: results of the multicenter AART study. PLOS Med. 2014; 11: e1001759. Correction: https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001790

  • 32

    van de Vrie M, Deegens JK, Eikmans M, et al. Urinary microRNA as biomarker in renal transplantation. Am J Transplant. 2017; 17: 1160–1166.

  • 33

    Gelley F, Zadori G, Nemes B, et al. MicroRNA profile before and after antiviral therapy in liver transplant recipients for hepatitis C virus cirrhosis. J Gastroenterol Hepatol. 2014; 29: 121–127.

  • 34

    Zununi Vahed S, Poursadegh Zonouzi A, Ghanbarian H, et al. Upregulated expression of circulating microRNAs in kidney transplant recipients with interstitial fibrosis and tubular atrophy. Iran J Kidney Dis. 2017; 11: 309–318.

  • 35

    Zununi Vahed S, Poursadegh Zonouzi A, Mahmoodpoor F, et al. Circulating miR-150, miR-192, miR-200b, and miR-423-3p as non-invasive biomarkers of chronic allograft dysfunction. Arch Med Res. 2017; 48: 96–104.

  • 36

    Millán O, Budde K, Sommerer C, et al. Urinary miR-155-5p and CXCL10 as prognostic and predictive biomarkers of rejection, graft outcome and treatment response in kidney transplantation. Br J Clin Pharmacol. 2017; 83: 2636–2650.

  • 37

    Iwasaki K, Yamamoto T, Inanaga Y, et al. MiR-142-5p and miR-486-5p as biomarkers for early detection of chronic antibody-mediated rejection in kidney transplantation. Biomarkers 2017; 22: 45–54.

  • 38

    Hidalgo LG, Sis B, Sellares J, et al. NK cell transcripts and NK cells in kidney biopsies from patients with donor-specific antibodies: evidence for NK cell involvement in antibody-mediated rejection. Am J Transplant. 2010; 10: 1812–1822.

  • 39

    Loupy A, Lefaucheur C, Vernerey D, et al. Molecular microscope strategy to improve risk stratification in early antibody-mediated kidney allograft rejection. J Am Soc Nephrol. 2014; 25: 2267–2277.

  • 40

    Ivanyi B. Transplant capillaropathy and transplant glomerulopathy: ultrastructural markers of chronic renal allograft rejection. Nephrol Dial Transplant. 2003; 18: 655–660.

  • 41

    Haas M, Loupy A, Lefaucheur C, et al. The Banff 2017 Kidney Meeting Report: Revised diagnostic criteria for chronic active T cell-mediated rejection, antibody-mediated rejection, and prospects for integrative endpoints for next-generation clinical trials. Am J Transplant. 2018; 18: 293–307.

  • 42

    Dobi D, Bodó Z, Kemény É, et al. Peritubular capillary basement membrane multilayering in early and advanced transplant glomerulopathy: quantitative parameters and diagnostic aspects. Virchows Arch. 2016; 469: 563–573.

  • 43

    Lipták P, Kemény E, Morvay Z, et al. Peritubular capillary damage in acute humoral rejection: an ultrastructural study on human renal allografts. Am J Transplant. 2005; 5: 2870–2876.

  • 44

    Mohan S, Palanisamy A, Tsapepas D, et al. Donor-specific antibodies adversely affect kidney allograft outcomes. J Am Soc Nephrol. 2012; 23: 2061–2071.

  • 45

    Zhang Y, Briggs D, Lowe D, et al. A new data-driven model for post-transplant antibody dynamics in high risk kidney transplantation. Math Biosci. 2017; 284: 3–11.

  • 46

    Loupy A, Vernerey D, Viglietti D, et al. Determinants and outcomes of accelerated arteriosclerosis: major impact of circulating antibodies. Circ Res. 2015; 117: 470–482.

  • 47

    Sagasaki M, Nakada Y, Yamamoto I, et al. Antibody-mediated rejection due to anti-HLA-DQ antibody after pregnancy and delivery in a female kidney transplant recipient. Nephrology (Carlton) 2018; 23(Suppl 2): 81–84.

  • 48

    Shapiro R, Sarwal MM. Pediatric kidney transplantation. Pediatr Clin North Am. 2010; 57: 393–400.

  • 49

    Heidt S, Haasnoot GW, van Rood JJ, et al. Kidney allocation based on proven acceptable antigens results in superior graft survival in highly sensitized patients. Kidney Int. 2018; 93: 491–500.

  • 50

    Solini S, Aiello S, Cassis P, et al. Prolonged cold ischemia accelerates cellular and humoral chronic rejection in a rat model of kidney allotransplantation. Transpl Int. 2012; 25: 347–356.

  • 51

    Caillard S, Becmeur C, Gautier-Vargas G, et al. Pre-existing donor-specific antibodies are detrimental to kidney allograft only when persistent after transplantation. Transpl Int. 2017; 30: 29–40.

  • 52

    Wiebe C, Gareau AJ, Pochinco D, et al. Evaluation of C1q status and titer of de novo donor-specific antibodies as predictors of allograft survival. Am J Transplant. 2017; 17: 703–711.

  • 53

    Moktefi A, Parisot J, Desvaux D, et al. C1q binding is not an independent risk factor for kidney allograft loss after an acute antibody-mediated rejection episode: a retrospective cohort study. Transpl Int. 2017; 30: 277–287.

  • 54

    Comoli P, Cioni M, Tagliamacco A, et al. Acquisition of C3d-binding activity by de novo donor-specific HLA antibodies correlates with graft loss in nonsensitized pediatric kidney recipients. Am J Transplant. 2016; 16: 2106–2116.

  • 55

    Lonze BE, Bae S, Kraus ES, et al. Outcomes and risk stratification for late antibody-mediated rejection in recipients of AB0-incompatible kidney transplants: a retrospective study. Transpl Int. 2017; 30: 874–883.

  • 56

    Couzi L, Manook M, Perera R, et al. Difference in outcomes after antibody-mediated rejection between AB0-incompatible and positive cross-match transplantations. Transpl Int. 2015; 28: 1205–1215.

  • 57

    Sivakumaran P, Vo AA, Villicana R, et al. Therapeutic plasma exchange for desensitization prior to transplantation in AB0-incompatible renal allografts. J Clin Apher. 2009; 24: 155–160.

  • 58

    Lee KW, Park JB, Oh DK, et al. Short-term outcomes of AB0-incompatible living donor kidney transplantation with uniform protocol: significance of baseline anti-AB0 titer. Transplant Proc. 2016; 48: 820–826.

  • 59

    Song GW, Lee SG, Hwang S, et al. Section 15. A desensitizing protocol without local graft infusion therapy and splenectomy is a safe and effective method in AB0-incompatible adult LDLT. Transplantation 2014; 97(Suppl 8): S59–S66.

  • 60

    Okada M, Watarai Y, Iwasaki K, et al. Favorable results in AB0-incompatible renal transplantation without B cell-targeted therapy: advantages and disadvantages of rituximab pretreatment. Clin Transplant. 2017; 31: e13071.

  • 61

    West-Thielke P, Progar K, Campara M, et al. Eculizumab for prevention of antibody-mediated rejection in blood group-incompatible renal transplantation. Transplant Proc. 2018; 50: 66–69.

  • 62

    Bartel G, Schwaiger E, Böhmig GA, et al. Prevention and treatment of alloantibody-mediated kidney transplant rejection. Transpl Int. 2011; 24: 1142–1155.

  • 63

    Habicht A, Regele H, Exner M, et al. A case of severe C4d-positive kidney allograft dysfunction in the absence of histomorphologic features of rejection. Wien Klin Wochenschr. 2002; 114: 945–948.

  • 64

    Böhmig GA, Regele H, Säemann MD, et al. Role of humoral immune reactions as target for antirejection therapy in recipients of a spousal-donor kidney graft. Am J Kidney Dis. 2000; 35: 667–673.

  • 65

    Min L, Shuming J, Zheng T, et al. Novel rescue therapy for C4d-positive acute humoral renal allograft rejection. Clin Transplant. 2005; 19: 51–55.

  • 66

    Böhmig GA, Wahrmann M, Regele H, et al. Immunoadsorption in severe C4d-positive acute kidney allograft rejection: a randomized controlled trial. Am J Transplant. 2007; 7: 117–121.

  • 67

    Waiser J, Duerr M, Budde K, et al. Treatment of acute antibody-mediated renal allograft rejection with cyclophosphamide. Transplantation 2017; 101: 2545–2552.

  • 68

    Roberts DM, Jiang SH, Chadban SJ, et al. The treatment of acute antibody-mediated rejection in kidney transplant recipients – a systematic review. Transplantation 2012; 94: 775–783.

  • 69

    Wan SS, Ying TD, Wyburn K, et al. The treatment of antibody-mediated rejection in kidney transplantation: an updated systematic review and meta-analysis. Transplantation 2018; 102: 557–568.