View More View Less
  • 1 Semmelweis Egyetem, Általános Orvostudományi Kar, Budapest, Tűzoltó u. 7–9., 1094
Open access

Absztrakt:

A primer immundefektusok (PID) ritka, veleszületett, többnyire öröklődő immunhiányos állapotok. Körülbelül 350 gén érintettsége mutatható ki ezen betegségeknél, amelynek következménye az immunsejtek számbeli és/vagy funkcionális csökkenése. A primer immunhiány gyakorisága napjainkban egyre nő. A PID kezelésében jelentős eredményeket értek el az immunglobulinpótlás és az őssejtterápia bevezetésével, ennek köszönhetően ezen betegek hosszú távú túlélése is megnövekedett. Mivel a PID-es betegek tovább élnek, mint néhány évtizeddel ezelőtt, több rosszindulatú daganatos megbetegedést is diagnosztizálunk náluk. PID-ben szenvedő gyermekek és felnőttek körében is a malignitás áll a fertőzések után a halálokok között a második helyen. Jelen munkánk során bemutatjuk a PID-es betegségekben előforduló gyakoribb rosszindulatú betegségeket és azok klinikai jellemzőit. Orv Hetil. 2018; 159(49): 2073–2078.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Page AR, Hansen AE, Good RA. Occurrence of leukemia and lymphoma in patients with agammaglobulinemia. Blood 1963; 21: 197–206.

  • 2

    Maródi L. Modern view of primary immunodeficiencies. [A primer immundeficienciák modern szemlélete. Orvostovábbk Szle. 2017; 14: 36–43. [Hungarian]

  • 3

    Boyle JM, Buckley RH. Population prevalence of diagnosed primary immunodeficiency diseases in the United States. J Clin Immunol. 2007; 27: 497–502.

  • 4

    Jonkman-Berk BM, van den Berg JM, Ten Berge IJ, et al. Primary immunodeficiencies in The Netherlands: national patient data demonstrate the increased risk of malignancy. Clin Immunol. 2015; 156: 154–162.

  • 5

    Kersey JH, Shapiro RS, Filipovich AH. Relationship of immunodeficiency to lymphoid malignancy. Pediatr Infect Dis J. 1988; 7(5 Suppl): 10–12.

  • 6

    Vajdic CM, Mao L, van Leeuwen MT, et al. Are antibody deficiency disorders associated with a narrower range of cancers than other forms of immunodeficiency? Blood 2010; 116: 1228–1234.

  • 7

    Notarangelo LD. PIDs and cancer: an evolving story. Blood 2010; 116: 1189–1190.

  • 8

    Gross TG, Shiramizu B. Lymphoproliferative disorders and malignancies related to immunodeficiencies. In: Pizzo PA, Poplack DG. (eds.) Principles and practice of pediatric oncology. Lippincott Williams & Wilkins, Philadelphia, PA, 2006; pp. 748–767.

  • 9

    Hauck F, Voss R, Urban C et al. Intrinsic and extrinsic causes of malignancies in patients with primary immunodeficiency disorders. J Allergy Clin Immunol. 2018; 141: 59–68.

  • 10

    Erdős M, Tóth B, Juhász P, et al. Nijmegen Breakage syndrome. [Nijmegen–Breakage-szindróma.] Orv Hetil. 2010; 151: 665–673. [Hungarian]

  • 11

    Janssen A, van der Burg M, Szuhai K, et al. Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science 2011; 30: 1895–1898.

  • 12

    Carbone A, Gloghini A, Dotti G. EBV-associated lymphoproliferative disorders: classification and treatment. Oncologist 2008; 13: 577–585.

  • 13

    Cohen JI. Primary immunodeficiencies associated with EBV disease. Curr Top Microbiol Immunol. 2015; 390: 241–265.

  • 14

    Shapiro RS. Malignancies in the setting of primary immunodeficiency: implications for hematologists/oncologists. Am J Hematol. 2011; 86: 48–55.

  • 15

    Seidemann K, Tiemann M, Henze G, et al. Therapy for non-Hodgkin lymphoma in children with primary immunodeficiency: analysis of 19 patients from the BFM trials. Med Pediatr Oncol. 1999; 33: 536–544.

  • 16

    Shabani M, Nichols KE, Rezaei N. Primary immunodeficiencies associated with EBV-induced lymphoproliferative disorders. Crit Rev Oncol Hematol. 2016; 108: 109–127.

  • 17

    Robison LL, Stoker V, Frizzera G, et al. Hodgkin’s disease in pediatric patients with naturally occurring immunodeficiency. Am J Pediatr Hematol Oncol. 1987; 9: 189–192.

  • 18

    Sandoval C, Swift M. Hodgkin disease in ataxia-telangiectasia patients with poor outcomes. Med Pediatr Oncol. 2003; 40: 162–166.

  • 19

    Suarez F, Mahlaoui N, Canioni D, et al. Incidence, presentation, and prognosis of malignancies in ataxia-telangiectasia: a report from the French national registry of primary immune deficiencies. J Clin Oncol. 2015; 33: 202–208.

  • 20

    Reiman A, Srinivasan V, Barone G, et al. Lymphoid tumours and breast cancer in ataxia telangiectasia; substantial protective effect of residual ATM kinase activity against childhood tumours. Br J Cancer 2011; 105: 586–591.

  • 21

    Jerzak KJ, Mancuso T, Eisen A. Ataxia-telangiectasia gene (ATM) mutation heterozygosity in breast cancer: a narrative review. Curr Oncol. 2018; 25: e176–e180.

  • 22

    Ambrose M, Gatti RA. Pathogenesis of ataxia-telangiectasia: the next generation of ATM functions. Blood 2013; 121: 4036–4045.

  • 23

    Resnick ES, Cunningham-Rundles C. The many faces of the clinical picture of common variable immune deficiency. Curr Opin Allergy Clin Immunol. 2012; 12: 595–601.

  • 24

    Gangemi S, Allegra A, Musolino C. Lymphoproliferative disease and cancer among patients with common variable immunodeficiency. Leuk Res. 2015; 39: 389–396.

  • 25

    Mayor PC, Eng KH, Singel KL. Cancer in primary immunodeficiency diseases: cancer incidence in the United States Immune Deficiency Network Registry. J Allergy Clin Immunol. 2018; 141: 1028–1035.

  • 26

    Salavoura K, Kolialexi A, Tsangaris G. Development of cancer in patients with primary immunodeficiencies. Anticancer Res. 2008; 28: 1263–1269.

  • 27

    Wheat WH, Cool CD, Morimoto Y, et al. Possible role of human herpesvirus 8 in the lymphoproliferative disorders in common variable immunodeficiency. J Exp Med. 2005; 202: 479–484.

  • 28

    Snapper SB, Rosen FS. The Wiskott–Aldrich syndrome protein (WASP): roles in signaling and cytoskeletal organization. Annu Rev Immunol. 1999; 17: 905–929.

  • 29

    Coppe A, Nogara L, Pizzuto MS. Somatic mutations activating Wiskott–Aldrich syndrome protein concomitant with RAS pathway mutations in juvenile myelomonocytic leukemia patients. Hum Mutat. 2018; 39: 579–587.

  • 30

    Sullivan K, Mullen C, Blaese R. A multiinstitutional survey of Wiskott–Aldrich syndrome. J Pediatr. 1994; 125: 876–885.

  • 31

    Imai K, Morio T, Zhu Y. Clinical course of patients with WASP gene mutations. Blood 2004; 103: 456–464.

  • 32

    Picard C, Mellouli F, Duprez R. Kaposi’s sarcoma in a child with Wiskott–Aldrich syndrome. Eur J Pediatr. 2006; 165: 453–457.

  • 33

    Bosticardo M, Marangoni F, Aiuti A. Recent advances in understanding the pathophysiology of Wiskott–Aldrich syndrome. Blood 2009; 113: 6288–6295.

  • 34

    Pai SY, DeMartiis D, Forino C, et al. Stem cell transplantation for the Wiskott–Aldrich syndrome: a single-center experience confirms efficacy of matched unrelated donor transplantation. Bone Marrow Transplant. 2006; 38: 671–679.

  • 35

    Cirillo E, Giardino G, Gallo V. Severe combined immunodeficiency – an update. Ann N Y Acad Sci. 2015; 1356: 90–106.

  • 36

    Morra M, Howie D, Grande MS. X-linked lymphoproliferative disease: a progressive immunodeficiency. Annu Rev Immunol. 2001; 19: 657–682.

  • 37

    Rezaei N, Hedayat M, Aghamohammadi A. Primary immunodeficiency diseases associated with increased susceptibility to viral infections and malignancies. J Allergy Clin Immunol. 2011; 127: 1329–1341.

  • 38

    Booth C, Gilmour KC, Veys P. X-linked lymphoproliferative disease due to SAP/SH2D1A deficiency: a multicenter study on the manifestations, management and outcome of the disease. Blood 2011; 117: 53–62.

  • 39

    Seidemann K, Henze G, Beck JD, et al. Non-Hodgkin’s lymphoma in pediatric patients with chromosomal breakage syndromes (AT and NBS): experience from the BFM trials. Ann Oncol. 2000; 11: 141–145.

  • 40

    Ghelli Luserna di Rora A, Iacobucci I, Martinelli G. The cell cycle checkpoint inhibitors in the treatment of leukemias. J Hematol Oncol. 2017; 10: 77.

  • 41

    Verhoeven D, Stoppelenburg AJ, Meyer-Wentrup F, et al. Increased risk of hematologic malignancies in primary immunodeficiency disorders: opportunities for immunotherapy. Clin Immunol. 2018; 190: 22–31.

The author instructions are available in PDF.
Instructions for Authors in Hungarian HERE.

Mendeley citation style is available HERE.

 

MANUSCRIPT SUBMISSION

  • Impact Factor (2018): 0.564
  • Medicine (miscellaneous) SJR Quartile Score (2018): Q3
  • Scimago Journal Rank (2018): 0.193
  • SJR Hirsch-Index (2018): 18

Language: Hungarian

Founded in 1857
Publication: Weekly, one volume of 52 issues annually

Senior editors

Editor(s)-in-Chief: Papp Zoltán

Read the professional career of Papp Zoltán HERE.

 

Editorial Board

Click for the Editorial Board

Akadémiai Kiadó
Address: Prielle Kornélia u. 21-35. H-1117 Budapest, Hungary
Phone: (+36 1) 464 8235 ---- Fax: (+36 1) 464 8221
Email: orvosihetilap@akkrt.hu