View More View Less
  • 1 Semmelweis Egyetem, Általános Orvostudományi Kar, Budapest
  • | 2 Magyar Tudományos Akadémia–Semmelweis Egyetem, Budapest, Szentkirályi u. 46., 1088
  • | 3 Országos Klinikai Idegtudományi Intézet, Budapest
  • | 4 Semmelweis Egyetem, Budapest
Open access

Cross Mark

Absztrakt:

A mikro-RNS-ek rövid, egyszálú RNS-molekulák, melyek szabályozó szerepüket más gének poszttranszkripcionális módosítása révén fejtik ki. A humán fehérjéket kódoló gének nagyjából 30%-a miRNS-ek szabályozása alatt is áll, aminek révén olyan alapvető folyamatokat befolyásolnak, mint a sejtosztódás, -differenciálódás és sejthalál. Számos daganattípussal kapcsolatban írták már le a megváltozott miRNS-expressziós mintázatot, és egyre több közlemény veti fel, hogy a miRNS-ek, mint terápiás célpontok is szóba jöhetnek. A csökkent expressziójú miRNS-ek adásán, illetve az emelkedett expressziót mutató miRNS-ek gátlásán keresztül nem csak egyetlen gén, hanem egész jelátviteli útvonalak befolyásolása is lehetővé válhat. Az agyalapimirigy-daganatok a leggyakoribb intracranialis tumorok közé tartoznak. Gyakoriságuk ellenére a sporadikusan előforduló adenomák kialakulásának molekuláris mechanizmusa még kevéssé van feltárva. Az utóbbi években egyre több bizonyíték utal arra, hogy a mikro-RNS-eknek fontos szerepük van az adenomagenezisben. Összefoglalónkban az agyalapimirigy-adenomákban leírt miRNS-ek szerepét kívánjuk bemutatni, valamint felvázolni a miRNS-ekhez kapcsolódó terápiás lehetőségeket. Orv Hetil. 2018; 159(7): 252–259.

  • 1

    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.

  • 2

    Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010; 11: 597–610.

  • 3

    Rajewsky N. microRNA target predictions in animals. Nat Genet. 2006; 38: S8–S13.

  • 4

    Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120: 15–20.

  • 5

    Daly AF, Burlacu MC, Livadariu E, et al. The epidemiology and management of pituitary incidentalomas. Horm Res. 2007; 68(Suppl 5): 195–198.

  • 6

    Daly AF, Tichomirowa MA, Beckers A. The epidemiology and genetics of pituitary adenomas. Best Pract Res Clin Endocrinol Metab. 2009; 23: 543–554.

  • 7

    Daly AF, Rixhon M, Adam C, et al. High prevalence of pituitary adenomas: a cross-sectional study in the province of Liège, Belgium. J Clin Endocrinol Metab. 2006; 91: 4769–4775.

  • 8

    Tichomirowa MA, Daly AF, Beckers A. Familial pituitary adenomas. J Intern Med. 2009; 266: 5–18.

  • 9

    Jiang X, Zhang X. The molecular pathogenesis of pituitary adenomas: an update. Endocrinol Metab. (Seoul) 2013; 28: 245–254.

  • 10

    Lecoq AL, Kamenický P, Guiochon-Mantel A, et al. Genetic mutations in sporadic pituitary adenomas – what to screen for? Nat Rev Endocrinol. 2015; 11: 43–54.

  • 11

    Yamasaki H, Mizusawa N, Nagahiro S, et al. GH-secreting pituitary adenomas infrequently contain inactivating mutations of PRKAR1A and LOH of 17q23–24. Clin Endocrinol. 2003; 58: 464–470.

  • 12

    Larsen JB, Schrøder HD, Sørensen AG, et al. Simple numerical chromosome aberrations characterize pituitary adenomas. Cancer Genet Cytogenet. 1999; 114: 144–149.

  • 13

    Bello MJ, de Campos JM, Kusak ME, et al. Chromosomal abnormalities in pituitary adenomas. Cancer Genet Cytogenet. 2001; 124: 76–79.

  • 14

    Farazi TA, Hoell JI, Morozov P, et al. MicroRNAs in human cancer. Adv Exp Med Biol. 2013; 774: 1–20.

  • 15

    Chen Y, Stallings RL. Differential patterns of microRNA expression in neuroblastoma are correlated with prognosis, differentiation, and apoptosis. Cancer Res. 2007; 67: 976–983.

  • 16

    Yuan B, Han DX, Dai LS, et al. A comprehensive expression profile of microRNAs in rat’s pituitary. Int J Clin Exp Med. 2015; 8: 13289–13295.

  • 17

    Li H, Xi Q, Xiong Y, et al. A comprehensive expression profile of microRNAs in porcine pituitary. PLoS ONE 2011; 6: e24883.

  • 18

    Schneeberger M, Altirriba J, García A, et al. Deletion of miRNA processing enzyme Dicer in POMC-expressing cells leads to pituitary dysfunction, neurodegeneration and development of obesity. Mol Metab. 2012; 2: 74–85.

  • 19

    Zhang Z, Florez S, Gutierrez-Hartmann A, et al. MicroRNAs regulate pituitary development, and microRNA 26b specifically targets lymphoid enhancer factor 1 (Lef-1), which modulates pituitary transcription factor 1 (Pit-1) expression. J Biol Chem. 2010; 285: 34718–34728.

  • 20

    Choi JW, Kang SM, Lee Y, et al. MicroRNA profiling in the mouse hypothalamus reveals oxytocin-regulating microRNA. J Neurochem. 2013; 126: 331–337.

  • 21

    Wang H, Graham I, Hastings R, et al. Gonadotrope-specific deletion of Dicer results in severely suppressed gonadotropins and fertility defects. J Biol Chem. 2015; 290: 2699–2714.

  • 22

    Bak M, Silahtaroglu A, Møller M, et al. MicroRNA expression in the adult mouse central nervous system. RNA 2008; 14: 432–444.

  • 23

    Zatelli MC, degli Uberti EC. MicroRNAs and possible role in pituitary adenoma. Semin Reprod Med. 2008; 26: 453–460.

  • 24

    Savulescu D, Feng J, Ping YS, et al. Gonadotropin-releasing hormone-regulated prohibitin mediates apoptosis of the gonadotrope cells. Mol Endocrinol. 2013; 27: 1856–1870.

  • 25

    Zhang N, Lin J, Chen J, et al. MicroRNA 375 mediates the signaling pathway of corticotropin-releasing factor (CRF) regulating pro-opiomelanocortin (POMC) expression by targeting mitogen-activated protein kinase 8. J Biol Chem. 2013; 288: 10361–10373.

  • 26

    Nemoto T, Mano A, Shibasaki T. miR-449a contributes to glucocorticoid-induced CRF-R1 downregulation in the pituitary during stress. Mol Endocrinol. 2013; 27: 1593–1602.

  • 27

    Ye RS, Xi QY, Qi Q, et al. Differentially expressed miRNAs after GnRH treatment and their potential roles in FSH regulation in porcine anterior pituitary cell. PLoS ONE 2013; 8: e57156.

  • 28

    Lannes J, L’Hôte D, Garrel G, et al. Rapid communication: A microRNA-132/212 pathway mediates GnRH activation of FSH expression. Mol Endocrinol. 2015; 29: 364–372.

  • 29

    Godoy J, Nishimura M, Webster NJ. Gonadotropin-releasing hormone induces miR-132 and miR-212 to regulate cellular morphology and migration in immortalized LβT2 pituitary gonadotrope cells. Mol Endocrinol. 2011; 25: 810–820.

  • 30

    Nemoto T, Mano A, Shibasaki T. Increased expression of miR-325-3p by urocortin 2 and its involvement in stress-induced suppression of LH secretion in rat pituitary. Am J Physiol Endocrinol Metab. 2012; 302: E781–E787.

  • 31

    Lannes J, L’hôte D, Fernandez-Vega A, et al. A regulatory loop between miR-132 and miR-125b involved in gonadotrope cells desensitization to GnRH. Sci Rep. 2016; 6: 31563.

  • 32

    Asa SL, Ezzat S. The pathogenesis of pituitary tumours. Nat Rev Cancer 2002; 2: 836–849.

  • 33

    Butz H. Role of microRNAs in sporadic pituitary tumorigenesis. Doctoral dissertation. [MikroRNS-ek szerepe a hypophysis daganatok patogenezisében. Doktori értekezés.] Semmelweis Egyetem, Klinikai Orvostudományok Doktori Iskola, Budapest, 2010. [Hungarian]

  • 34

    Palumbo T, Faucz FR, Azevedo M, et al. Functional screen analysis reveals miR-26b and miR-128 as central regulators of pituitary somatomammotrophic tumor growth through activation of the PTEN-AKT pathway. Oncogene 2013; 32: 1651–1659.

  • 35

    Wei Z, Zhou C, Liu M, et al. MicroRNA involvement in a metastatic non-functioning pituitary carcinoma. Pituitary 2015; 18: 710–721.

  • 36

    Pei L, Melmed S, Scheithauer B, et al. Frequent loss of heterozygosity at the retinoblastoma susceptibility gene (RB) locus in aggressive pituitary tumors: evidence for a chromosome 13 tumor suppressor gene other than RB. Cancer Res. 1995; 55: 1613–1616.

  • 37

    Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99: 15524–15529.

  • 38

    Bottoni A, Piccin D, Tagliati F, et al. miR-15a and miR-16-1 down-regulation in pituitary adenomas. J Cell Physiol. 2005; 204: 280–285.

  • 39

    Bottoni A, Zatelli MC, Ferracin M, et al. Identification of differentially expressed microRNAs by microarray: A possible role for microRNA genes in pituitary adenomas. J Cell Physiol. 2007; 210: 370–377.

  • 40

    Amaral FC, Torres N, Saggioro F, et al. MicroRNAs differentially expressed in ACTH-secreting pituitary tumors. J Clin Endocrinol Metab. 2009; 94: 320–323.

  • 41

    Stilling G, Sun Z, Zhang S, et al. MicroRNA expression in ACTH-producing pituitary tumors: up-regulation of microRNA-122 and -493 in pituitary carcinomas. Endocrine 2010; 38: 67–75.

  • 42

    Butz H, Likó I, Czirják S, et al. MicroRNA profile indicates downregulation of the TGFβ pathway in sporadic non-functioning pituitary adenomas. Pituitary 2011; 14: 112–124.

  • 43

    Mao ZG, He DS, Zhou J, et al. Differential expression of microRNAs in GH-secreting pituitary adenomas. Diagn Pathol. 2010; 5: 79.

  • 44

    Butz H, Likó I, Czirják S, et al. Down-regulation of Wee1 kinase by a specific subset of microRNA in human sporadic pituitary adenomas. J Clin Endocrinol Metab. 2010; 95: E181–E191.

  • 45

    Zhen W, Qiu D, Zhiyong C, et al. MicroRNA-524-5p functions as a tumor suppressor in a human pituitary tumor-derived cell line. Horm Metab Res. 2017; 49: 550-557.

  • 46

    Butz H, Németh K, Czenke D, et al. Systematic investigation of expression of G2/M transition genes reveals CDC25 alteration in nonfunctioning pituitary adenomas. Pathol Oncol Res. 2017; 23: 633–641.

  • 47

    D’Angelo D, Palmieri D, Mussnich P, et al. Altered microRNA expression profile in human pituitary GH adenomas: down-regulation of miRNA targeting HMGA1, HMGA2, and E2F1. J Clin Endocrinol Metab. 2012; 97: E1128–E1138.

  • 48

    Dénes J, Kasuki L, Trivellin G, et al. Regulation of aryl hydrocarbon receptor interacting protein (AIP) protein expression by MiR-34a in sporadic somatotropinomas. PLoS ONE 2015; 10: e0117107.

  • 49

    Müssnich P, Raverot G, Jaffrain-Rea M-L, et al. Downregulation of miR-410 targeting the cyclin B1 gene plays a role in pituitary gonadotroph tumors. Cell Cycle 2015; 14: 2590–2597.

  • 50

    Gentilin E, Tagliati F, Filieri C, et al. miR-26a plays an important role in cell cycle regulation in ACTH-secreting pituitary adenomas by modulating protein kinase Cδ. Endocrinology 2013; 154: 1690–1700.

  • 51

    Liao C, Chen W, Fan X, et al. MicroRNA-200c inhibits apoptosis in pituitary adenoma cells by targeting the PTEN/Akt signaling pathway. Oncol Res. 2013; 21: 129–136.

  • 52

    Yu C, Li J, Sun F, et al. Expression and clinical significance of miR-26a and pleomorphic adenoma gene 1 (PLAG1) in invasive pituitary adenoma. Med Sci Monit. 2016; 22: 5101–5108.

  • 53

    Palmieri D, D’Angelo D, Valentino T, et al. Downregulation of HMGA-targeting microRNAs has a critical role in human pituitary tumorigenesis. Oncogene 2012; 31: 3857–3865.

  • 54

    Leone V, Langella C, D’Angelo D, et al. Mir-23b and miR-130b expression is downregulated in pituitary adenomas. Mol Cell Endocrinol. 2014; 390: 1–7.

  • 55

    Trivellin G, Butz H, Delhove J, et al. MicroRNA miR-107 is overexpressed in pituitary adenomas and inhibits the expression of aryl hydrocarbon receptor-interacting protein in vitro. Am J Physiol Endocrinol Metab. 2012; 303: E708-719.

  • 56

    Qian ZR, Asa SL, Siomi H, et al. Overexpression of HMGA2 relates to reduction of the let-7 and its relationship to clinicopathological features in pituitary adenomas. Mod Pathol. 2009; 22: 431–441.

  • 57

    Zheng Z, Zhang Y, Zhang Z, et al. Effect of miR-106b on invasiveness of pituitary adenoma via PTEN-PI3K/AKT. Med Sci Monit. 2017; 23: 1277–1285.

  • 58

    Zhou K, Fan YD, Wu PF, et al. MicroRNA-145 inhibits the activation of the mTOR signaling pathway to suppress the proliferation and invasion of invasive pituitary adenoma cells by targeting AKT3 in vivo and in vitro. Onco Targets Ther. 2017; 10: 1625–1635.

  • 59

    Renjie W, Haiqian L. MiR-132, miR-15a and miR-16 synergistically inhibit pituitary tumor cell proliferation, invasion and migration by targeting Sox5. Cancer Lett. 2015; 356: 568–578.

  • 60

    Roberts AB, Wakefield LM. The two faces of transforming growth factor β in carcinogenesis. PNAS 2003; 100: 8621–8623.

  • 61

    Melmed S. Mechanisms for pituitary tumorigenesis: the plastic pituitary. J Clin Invest. 2003; 112: 1603–1618.

  • 62

    Ikeda H. Mutational analysis of transforming growth factor-beta receptor type II and Smad3 tumor suppressor genes in prolactinomas. Brain Tumor Pathol. 2006; 23: 7–12.

  • 63

    Lebrun JJ. Activin, TGF-β and menin in pituitary tumorigenesis. Adv Exp Med Biol. 2009; 668: 69–78.

  • 64

    Davis BN, Hilyard AC, Lagna G, et al. SMAD proteins control DROSHA-mediated microRNA maturation. Nature 2008; 454: 56–61.

  • 65

    Butz H, Rácz K, Hunyady L, et al. Crosstalk between TGF-β signaling and the microRNA machinery. Trends Pharmacol Sci. 2012; 33: 382–393.

  • 66

    Zhou H, Wang K, Hu Z, et al. TGF-β1 alters microRNA profile in human gastric cancer cells. Chin J Cancer Res. 2013; 25: 102–111.

  • 67

    Mendias CL, Gumucio JP, Lynch EB. Mechanical loading and TGF-β change the expression of multiple miRNAs in tendon fibroblasts. J Appl Physiol (1985). 2012; 113: 56–62.

  • 68

    Pais H, Nicolas FE, Soond SM, et al. Analyzing mRNA expression identifies Smad3 as a microRNA-140 target regulated only at protein level. RNA 2010; 16: 489–494.

  • 69

    Quereda V, Malumbres M. Cell cycle control of pituitary development and disease. J Mol Endocrinol. 2009; 42: 75–86.

  • 70

    Fedele M, Battista S, Kenyon L, et al. Overexpression of the HMGA2 gene in transgenic mice leads to the onset of pituitary adenomas. Oncogene 2002; 21: 3190–3198.

  • 71

    Fedele M, Pentimalli F, Baldassarre G, et al. Transgenic mice overexpressing the wild-type form of the HMGA1 gene develop mixed growth hormone/prolactin cell pituitary adenomas and natural killer cell lymphomas. Oncogene 2005; 24: 3427–3435.

  • 72

    Wang C, Su Z, Sanai N, et al. microRNA expression profile and differentially-expressed genes in prolactinomas following bromocriptine treatment. Oncol Rep. 2012; 27: 1312–1320.

  • 73

    Gadelha MR, Kasuki L, Dénes J, et al. MicroRNAs: Suggested role in pituitary adenoma pathogenesis. J Endocrinol Invest. 2013; 36: 889–895.

  • 74

    Christopher AF, Kaur RP, Kaur G, et al. MicroRNA therapeutics: Discovering novel targets and developing specific therapy. Perspect Clin Res. 2016; 7: 68–74.

  • 75

    Krützfeldt J. Strategies to use microRNAs as therapeutic targets. Best Pract Res Clin Endocrinol Metab. 2016; 30: 551–561.

  • 76

    Liang HQ, Wang RJ, Diao CF, et al. The PTTG1-targeting miRNAs miR-329, miR-300, miR-381, and miR-655 inhibit pituitary tumor cell tumorigenesis and are involved in a p53/PTTG1 regulation feedback loop. Oncotarget 2015; 6: 29413–29427.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 126 95 3
PDF Downloads 105 91 5