Az invazív mintavétel kapcsán elvégzett hagyományos magzati kromoszómavizsgálat a mai napig a praenatalis diagnosztika alapvető vizsgálómódszere. Felhasználásának a fénymikroszkópos vizsgálat felbontási képessége szab határt. A kariotipizálással nem felismerhető, szubmikroszkópos kromoszóma-rendellenességek, microdeletiók és microduplicatiók, kópiaszám-variációk (CNV-k) vizsgálatára a nagy felbontású molekuláris vizsgálóeljárások biztosítanak lehetőséget. A kromoszomális összehasonlító microarray-vizsgálat (array-komparatív genomhibridizálás – arrayCGH) alkalmas az anyai életkortól függetlenül előforduló kópiaszám-variációk prae- és postnatalis kimutatására. A módszer a fejlett országok orvosi gyakorlatában rutinszerűen alkalmazott eljárás a magzati diagnosztikában. Az elmúlt egy évtized külföldi eredményei alapján alkalmazása ultrahangeltérést nem mutató magzatok esetén körülbelül 1–2%, strukturális ultrahangeltérést mutató magzatoknál körülbelül 5–7% többlet genetikai információval szolgál a hagyományos kromoszómavizsgálattal szemben. Közleményünkben áttekintjük az arrayCGH módszerét, praenatalis alkalmazásának nemzetközi gyakorlatát, s javaslatokat és indikációs kört fogalmazunk meg a módszer praenatalis használatának magyarországi bevezetésére. Orv Hetil. 2019; 160(13): 484–493.
Papp Z. Culturing of amniocytes for karyotyping. In: Papp Z. (ed.) Clinical genetics. (Magzatvízsejtek tenyésztése karyotypizálás céljából. In: Papp Z. (szerk.) Klinikai genetika.) Golden Book, Budapest, 1995; pp. 182–188. [Hungarian]
Papp C, Papp Z. Chorionic villus sampling and amniocentesis: what are the risks in current practice? Curr Opin Obstet Gynecol. 2003; 15: 159–165.
Bakker M, Birnie E, Robles de Medina P, et al. Total pregnancy loss after chorionic villus sampling and amniocentesis: a cohort study. Ultrasound Obstet Gynecol. 2017; 49: 599–606.
Nicolaides KH. Turning the pyramid of prenatal care. Fetal Diagn Ther. 2011; 29: 183–196.
P Tardy E, Tóth A, Hajdu K, et al. Fluorescence in situ hybridization in prenatal diagnosis. First experiences. [A fluoreszcens in situ hibridizáció alkalmazása a praenatalis diagnosztikában. Első tapasztalatok.] Orv Hetil. 1996; 137: 523–526. [Hungarian]
Findlay I, Tóth T, Matthews P, et al. Rapid determination of trisomy 18 parental origin using fluorescent PCR and small tandem repeat markers: case reports. Clin Genet. 1998; 53: 92–95.
Tidrenczel Z, P Tardy E, Sarkadi E, et al. Prenatally diagnosed case of Pallister–Killian syndrome. [Praenatalisan felismert Pallister–Killian-szindróma esete.] Orv Hetil. 2018; 159: 847–852. [Hungarian]
Findlay I, Tóth T, Matthews P, et al. Rapid trisomy diagnosis (21, 18, and 13) using fluorescent PCR and short tandem repeats: applications for prenatal diagnosis and preimplantation genetic diagnosis. J Assist Reprod Genet. 1998; 15: 266–275.
Tóth T, Findlay I, Nagy B, et al. Accurate sizing of (CAG)n repeats causing Huntington disease by fluorescent PCR. Clin Chem. 1997; 43: 2422–2423.
Kallioniemi A, Kallioniemi OP, Sudar D, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 1992; 258: 818–821.
Solinas-Toldo S, Lampel S, Stilgenbauer S, et al. Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer 1997; 20: 399–407.
Pinkel D, Segraves R, Sudar D, et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet. 1998; 20: 207–211.
de Ravel TJ, Devriendt K, Fryns JP, et al. What’s new in karyotyping? The move towards array comparative genomic hybridisation (CGH). Eur J Pediatr. 2007; 166: 637–643.
Miller DT, Adam MP, Aradhya S, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010; 86: 749–764.
Fan YS, Jayakar P, Zhu H, et al. Detection of pathogenic gene copy number variations in patients with mental retardation by genomewide oligonucleotide array comparative genomic hybridization. Hum Mutat. 2007; 28: 1124–1132.
Duga B, Czakó M, Hadzsiev K, et al. Identifying rare genomic disorders with array comparative genomic hybridization in Hungary. [Ritka genomikai betegségek azonosítása array komparatív genomhibridizációs módszerrel – elsőként Magyarországon.] Orv Hetil. 2014; 155: 358–361. [Hungarian]
South ST, Lee C, Lamb AN, et al. ACMG standards and guidelines for constitutional cytogenomic microarray analysis, including postnatal and prenatal applications: revision 2013. Genet Med. 2013; 15: 901–909.
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015; 17: 405–424.
Ballif BC, Rorem EA, Sundin K, et al. Detection of low-level mosaicism by array CGH in routine diagnostic specimens. Am J Med Genet. 2006; 140A: 2757–2767.
Oral Abstracts of the ISPD 19th International Conference on Prenatal Diagnosis and Therapy, Washington, DC, 12–15 July 2015. Prenat Diagn. 2015; 35(Suppl 1): 1–26.
Schaeffer AJ, Chung J, Heretis K, et al. Comparative genomic hybridization–array analysis enhances the detection of aneuploidies and submicroscopic imbalances in spontaneous miscarriages. Am J Hum Genet. 2004; 74: 1168–1174.
Wapner RJ, Martin CL, Levy B, et al. Chromosomal microarray versus karyotyping for prenatal diagnosis. N Engl J Med. 2012; 367: 2175–2184.
Srebniak MI, Joosten M, Knapen MF, et al. Frequency of submicroscopic chromosomal aberrations in pregnancies without increased risk for structural chromosomal aberrations: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2018; 51: 445–452.
Microarrays and next-generation sequencing technology: the use of advanced genetic diagnostic tools in obstetrics and gynecology. Committee Opinion No. 682. American College of Obstetricians and Gynecologists. Obstet Gynecol. 2016; 128: 1462–1463.
Srebniak MI, Diderich KE, Joosten M, et al. Prenatal SNP array testing in 1000 fetuses with ultrasound anomalies: causative, unexpected and susceptibility CNVs. Eur J Hum Genet. 2016; 24: 645–651.
Hillman SC, McMullan DJ, Hall G, et al. Use of prenatal chromosomal microarray: prospective cohort study and systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2013; 41: 610–620.
Yang X, Li R, Fu F, et al. Submicroscopic chromosomal abnormalities in fetuses with increased nuchal translucency and normal karyotype. J Matern Fetal Neonatal Med. 2017; 30: 194–198.
Donnelly JC, Platt LD, Rebarber A, et al. Association of copy number variants with specific ultrasonographically detected fetal anomalies. Obstet Gynecol. 2014; 124: 83–90.
Shaffer LG, Rosenfeld JA, Dabell MP, et al. Detection rates of clinically significant genomic alterations by microarray analysis for specific anomalies detected by ultrasound. Prenat Diagn. 2012; 32: 986–995.
Breckpot J, Thienpont B, Peeters H, et al. Array comparative genomic hybridization as a diagnostic tool for syndromic heart defects. J Pediatr. 2010; 156: 810–817.e4.
Lazier J, Fruitman D, Lauzon J, et al. Prenatal array comparative genomic hybridization in fetuses with structural cardiac anomalies. J Obstet Gynaecol Can. 2016; 38: 619–626.
Saldarriaga W, García-Perdomo HA, Arango-Pineda J, et al. Karyotype versus genomic hybridization for the prenatal diagnosis of chromosomal abnormalities: a metaanalysis. Am J Obstet Gynecol. 2015; 212: 330.e1–330.e10.
Fragouli E, Alfarawati S, Daphnis DD, et al. Cytogenetic analysis of human blastocysts with the use of FISH, CGH and aCGH: scientific data and technical evaluation. Hum Reprod. 2011; 26: 480–490.
American College of Obstetricians and Gynecologists Committee on Genetics. Committee Opinion No. 581: The use of chromosomal microarray analysis in prenatal diagnosis. Obstet Gynecol. 2013; 122: 1374–1377.
Kan AS, Lau ET, Tang WF, et al. Whole-genome array CGH evaluation for replacing prenatal karyotyping in Hong Kong. PLoS ONE 2014; 9: e87988.
Taylor-Phillips S, Freeman K, Geppert J, et al. Accuracy of non-invasive prenatal testing using cell-free DNA for detection of Down, Edwards and Patau syndromes: a systematic review and meta-analysis. BMJ Open 2016; 6: e010002.
Pertile MD, Halks-Miller M, Flowers N, et al. Rare autosomal trisomies, revealed by maternal plasma DNA sequencing, suggest increased risk of feto-placental disease. Sci Transl Med. 2017; 9: eaan 1240.
Grati FR, Molina Gomes D, Ferreira JC, et al. Prevalence of recurrent pathogenic microdeletions and microduplications in over 9500 pregnancies. Prenat Diagn. 2015; 35: 801–809.
Burnside RD. 22q11.21 deletion syndromes: a review of proximal, central, and distal deletions and their associated features. Cytogenet Genome Res. 2015; 146: 89–99.
Chaoui R, Kalache KD, Heling KS, et al. Absent or hypoplastic thymus on ultrasound: a marker for deletion 22q11.2 in fetal cardiac defects. Ultrasound Obstet Gynecol. 2002; 20: 546–552.
Boudjemline Y, Fermont L, Le Bidois J, et al. Prevalence of 22q11 deletion in fetuses with conotruncal cardiac defects: a 6-year prospective study. J Pediatr. 2001; 138: 520–524.
Ravi H, McNeill G, Goel S, et al. Validation of a SNP-based non-invasive prenatal test to detect the fetal 22q11.2 deletion in maternal plasma samples. PLoS ONE 2018; 13: e0193476.
Dondorp W, de Wert G, Bombard Y, et al. Non-invasive prenatal testing for aneuploidy and beyond: challenges of responsible innovation in prenatal screening. Eur J Hum Genet. 2015; 23: 1592. Correction to: Eur J Hum Genet. 2015; 23: 1438–1450.
Stosic M, Brynn B, Wapner R. The use of chromosomal microarray analysis in prenatal diagnosis. Obstet Gynecol Clin N Am. 2018; 45: 55–68.
Beulen L, Faas BH, Feenstra I, et al. Clinical utility of non-invasive prenatal testing in pregnancies with ultrasound anomalies. Ultrasound Obstet Gynecol. 2017; 49: 721–728.
Tidrenczel Zs, Tardy EP, Piko H, et al. Prenatal diagnosis of 4q terminal deletion and review of the literature. Cytogenet Genome Res. 2019 (accepted for publication).