View More View Less
  • 1 Magyar Honvédség Egészségügyi Központ, Budapest, Podmaniczky u. 111., 1062
  • 2 Magyar Honvédség Egészségügyi Központ, Budapest
  • 3 Pentacore Laboratóriumok és Semmelweis Egyetem, Általános Orvostudományi Kar, I, Belgyógyászati Klinika. Budapest
  • 4 Semmelweis Egyetem, Általános Orvostudományi Kar, Budapest

Absztrakt:

Az invazív mintavétel kapcsán elvégzett hagyományos magzati kromoszómavizsgálat a mai napig a praenatalis diagnosztika alapvető vizsgálómódszere. Felhasználásának a fénymikroszkópos vizsgálat felbontási képessége szab határt. A kariotipizálással nem felismerhető, szubmikroszkópos kromoszóma-rendellenességek, microdeletiók és microduplicatiók, kópiaszám-variációk (CNV-k) vizsgálatára a nagy felbontású molekuláris vizsgálóeljárások biztosítanak lehetőséget. A kromoszomális összehasonlító microarray-vizsgálat (array-komparatív genomhibridizálás – arrayCGH) alkalmas az anyai életkortól függetlenül előforduló kópiaszám-variációk prae- és postnatalis kimutatására. A módszer a fejlett országok orvosi gyakorlatában rutinszerűen alkalmazott eljárás a magzati diagnosztikában. Az elmúlt egy évtized külföldi eredményei alapján alkalmazása ultrahangeltérést nem mutató magzatok esetén körülbelül 1–2%, strukturális ultrahangeltérést mutató magzatoknál körülbelül 5–7% többlet genetikai információval szolgál a hagyományos kromoszómavizsgálattal szemben. Közleményünkben áttekintjük az arrayCGH módszerét, praenatalis alkalmazásának nemzetközi gyakorlatát, s javaslatokat és indikációs kört fogalmazunk meg a módszer praenatalis használatának magyarországi bevezetésére. Orv Hetil. 2019; 160(13): 484–493.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Papp Z. Culturing of amniocytes for karyotyping. In: Papp Z. (ed.) Clinical genetics. (Magzatvízsejtek tenyésztése karyotypizálás céljából. In: Papp Z. (szerk.) Klinikai genetika.) Golden Book, Budapest, 1995; pp. 182–188. [Hungarian]

  • 2

    Papp C, Papp Z. Chorionic villus sampling and amniocentesis: what are the risks in current practice? Curr Opin Obstet Gynecol. 2003; 15: 159–165.

  • 3

    Bakker M, Birnie E, Robles de Medina P, et al. Total pregnancy loss after chorionic villus sampling and amniocentesis: a cohort study. Ultrasound Obstet Gynecol. 2017; 49: 599–606.

  • 4

    Nicolaides KH. Turning the pyramid of prenatal care. Fetal Diagn Ther. 2011; 29: 183–196.

  • 5

    P Tardy E, Tóth A, Hajdu K, et al. Fluorescence in situ hybridization in prenatal diagnosis. First experiences. [A fluoreszcens in situ hibridizáció alkalmazása a praenatalis diagnosztikában. Első tapasztalatok.] Orv Hetil. 1996; 137: 523–526. [Hungarian]

  • 6

    Findlay I, Tóth T, Matthews P, et al. Rapid determination of trisomy 18 parental origin using fluorescent PCR and small tandem repeat markers: case reports. Clin Genet. 1998; 53: 92–95.

  • 7

    Tidrenczel Z, P Tardy E, Sarkadi E, et al. Prenatally diagnosed case of Pallister–Killian syndrome. [Praenatalisan felismert Pallister–Killian-szindróma esete.] Orv Hetil. 2018; 159: 847–852. [Hungarian]

  • 8

    Findlay I, Tóth T, Matthews P, et al. Rapid trisomy diagnosis (21, 18, and 13) using fluorescent PCR and short tandem repeats: applications for prenatal diagnosis and preimplantation genetic diagnosis. J Assist Reprod Genet. 1998; 15: 266–275.

  • 9

    Tóth T, Findlay I, Nagy B, et al. Accurate sizing of (CAG)n repeats causing Huntington disease by fluorescent PCR. Clin Chem. 1997; 43: 2422–2423.

  • 10

    Kallioniemi A, Kallioniemi OP, Sudar D, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 1992; 258: 818–821.

  • 11

    Solinas-Toldo S, Lampel S, Stilgenbauer S, et al. Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer 1997; 20: 399–407.

  • 12

    Pinkel D, Segraves R, Sudar D, et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet. 1998; 20: 207–211.

  • 13

    de Ravel TJ, Devriendt K, Fryns JP, et al. What’s new in karyotyping? The move towards array comparative genomic hybridisation (CGH). Eur J Pediatr. 2007; 166: 637–643.

  • 14

    Miller DT, Adam MP, Aradhya S, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010; 86: 749–764.

  • 15

    Fan YS, Jayakar P, Zhu H, et al. Detection of pathogenic gene copy number variations in patients with mental retardation by genomewide oligonucleotide array comparative genomic hybridization. Hum Mutat. 2007; 28: 1124–1132.

  • 16

    Duga B, Czakó M, Hadzsiev K, et al. Identifying rare genomic disorders with array comparative genomic hybridization in Hungary. [Ritka genomikai betegségek azonosítása array komparatív genomhibridizációs módszerrel – elsőként Magyarországon.] Orv Hetil. 2014; 155: 358–361. [Hungarian]

  • 17

    South ST, Lee C, Lamb AN, et al. ACMG standards and guidelines for constitutional cytogenomic microarray analysis, including postnatal and prenatal applications: revision 2013. Genet Med. 2013; 15: 901–909.

  • 18

    Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015; 17: 405–424.

  • 19

    Ballif BC, Rorem EA, Sundin K, et al. Detection of low-level mosaicism by array CGH in routine diagnostic specimens. Am J Med Genet. 2006; 140A: 2757–2767.

  • 20

    Oral Abstracts of the ISPD 19th International Conference on Prenatal Diagnosis and Therapy, Washington, DC, 12–15 July 2015. Prenat Diagn. 2015; 35(Suppl 1): 1–26.

  • 21

    Schaeffer AJ, Chung J, Heretis K, et al. Comparative genomic hybridization–array analysis enhances the detection of aneuploidies and submicroscopic imbalances in spontaneous miscarriages. Am J Hum Genet. 2004; 74: 1168–1174.

  • 22

    Wapner RJ, Martin CL, Levy B, et al. Chromosomal microarray versus karyotyping for prenatal diagnosis. N Engl J Med. 2012; 367: 2175–2184.

  • 23

    Srebniak MI, Joosten M, Knapen MF, et al. Frequency of submicroscopic chromosomal aberrations in pregnancies without increased risk for structural chromosomal aberrations: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2018; 51: 445–452.

  • 24

    Microarrays and next-generation sequencing technology: the use of advanced genetic diagnostic tools in obstetrics and gynecology. Committee Opinion No. 682. American College of Obstetricians and Gynecologists. Obstet Gynecol. 2016; 128: 1462–1463.

  • 25

    Srebniak MI, Diderich KE, Joosten M, et al. Prenatal SNP array testing in 1000 fetuses with ultrasound anomalies: causative, unexpected and susceptibility CNVs. Eur J Hum Genet. 2016; 24: 645–651.

  • 26

    Hillman SC, McMullan DJ, Hall G, et al. Use of prenatal chromosomal microarray: prospective cohort study and systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2013; 41: 610–620.

  • 27

    Yang X, Li R, Fu F, et al. Submicroscopic chromosomal abnormalities in fetuses with increased nuchal translucency and normal karyotype. J Matern Fetal Neonatal Med. 2017; 30: 194–198.

  • 28

    Donnelly JC, Platt LD, Rebarber A, et al. Association of copy number variants with specific ultrasonographically detected fetal anomalies. Obstet Gynecol. 2014; 124: 83–90.

  • 29

    Shaffer LG, Rosenfeld JA, Dabell MP, et al. Detection rates of clinically significant genomic alterations by microarray analysis for specific anomalies detected by ultrasound. Prenat Diagn. 2012; 32: 986–995.

  • 30

    Breckpot J, Thienpont B, Peeters H, et al. Array comparative genomic hybridization as a diagnostic tool for syndromic heart defects. J Pediatr. 2010; 156: 810–817.e4.

  • 31

    Lazier J, Fruitman D, Lauzon J, et al. Prenatal array comparative genomic hybridization in fetuses with structural cardiac anomalies. J Obstet Gynaecol Can. 2016; 38: 619–626.

  • 32

    Saldarriaga W, García-Perdomo HA, Arango-Pineda J, et al. Karyotype versus genomic hybridization for the prenatal diagnosis of chromosomal abnormalities: a metaanalysis. Am J Obstet Gynecol. 2015; 212: 330.e1–330.e10.

  • 33

    Fragouli E, Alfarawati S, Daphnis DD, et al. Cytogenetic analysis of human blastocysts with the use of FISH, CGH and aCGH: scientific data and technical evaluation. Hum Reprod. 2011; 26: 480–490.

  • 34

    American College of Obstetricians and Gynecologists Committee on Genetics. Committee Opinion No. 581: The use of chromosomal microarray analysis in prenatal diagnosis. Obstet Gynecol. 2013; 122: 1374–1377.

  • 35

    Kan AS, Lau ET, Tang WF, et al. Whole-genome array CGH evaluation for replacing prenatal karyotyping in Hong Kong. PLoS ONE 2014; 9: e87988.

  • 36

    Taylor-Phillips S, Freeman K, Geppert J, et al. Accuracy of non-invasive prenatal testing using cell-free DNA for detection of Down, Edwards and Patau syndromes: a systematic review and meta-analysis. BMJ Open 2016; 6: e010002.

  • 37

    Pertile MD, Halks-Miller M, Flowers N, et al. Rare autosomal trisomies, revealed by maternal plasma DNA sequencing, suggest increased risk of feto-placental disease. Sci Transl Med. 2017; 9: eaan 1240.

  • 38

    Grati FR, Molina Gomes D, Ferreira JC, et al. Prevalence of recurrent pathogenic microdeletions and microduplications in over 9500 pregnancies. Prenat Diagn. 2015; 35: 801–809.

  • 39

    Burnside RD. 22q11.21 deletion syndromes: a review of proximal, central, and distal deletions and their associated features. Cytogenet Genome Res. 2015; 146: 89–99.

  • 40

    Chaoui R, Kalache KD, Heling KS, et al. Absent or hypoplastic thymus on ultrasound: a marker for deletion 22q11.2 in fetal cardiac defects. Ultrasound Obstet Gynecol. 2002; 20: 546–552.

  • 41

    Boudjemline Y, Fermont L, Le Bidois J, et al. Prevalence of 22q11 deletion in fetuses with conotruncal cardiac defects: a 6-year prospective study. J Pediatr. 2001; 138: 520–524.

  • 42

    Ravi H, McNeill G, Goel S, et al. Validation of a SNP-based non-invasive prenatal test to detect the fetal 22q11.2 deletion in maternal plasma samples. PLoS ONE 2018; 13: e0193476.

  • 43

    Dondorp W, de Wert G, Bombard Y, et al. Non-invasive prenatal testing for aneuploidy and beyond: challenges of responsible innovation in prenatal screening. Eur J Hum Genet. 2015; 23: 1592. Correction to: Eur J Hum Genet. 2015; 23: 1438–1450.

  • 44

    Stosic M, Brynn B, Wapner R. The use of chromosomal microarray analysis in prenatal diagnosis. Obstet Gynecol Clin N Am. 2018; 45: 55–68.

  • 45

    Beulen L, Faas BH, Feenstra I, et al. Clinical utility of non-invasive prenatal testing in pregnancies with ultrasound anomalies. Ultrasound Obstet Gynecol. 2017; 49: 721–728.

  • 46

    Tidrenczel Zs, Tardy EP, Piko H, et al. Prenatal diagnosis of 4q terminal deletion and review of the literature. Cytogenet Genome Res. 2019 (accepted for publication).

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Nov 2020 0 12 13
Dec 2020 0 7 24
Jan 2021 0 12 17
Feb 2021 0 21 29
Mar 2021 0 24 15
Apr 2021 0 5 7
May 2021 0 0 0