A magas sófogyasztás általános az iparosodott társadalmakban, és számos civilizációs betegség forrása. A közelmúlt kutatásai hívták fel a figyelmet a nátriumegyensúly fenntartásában szerepet játszó új extrarenalis folyamatokra. Rövid távon a bőrszövet nátriumtárolása pufferként szolgál a nátrium ozmotikus tulajdonsága következtében kialakuló, növekvő volumenterheléssel szemben, valamint elősegíti a fertőzések elleni immunválaszt. Hosszú távon azonban a fokozott szöveti nátriumkoncentráció egy adott mértéket meghaladva patofiziológiás folyamatokat indíthat be gyulladásos válaszreakció provokálásával. A nátrium immunmoduláns hatásának következtében a veleszületett és szerzett immunrendszer effektorsejtjei aktiválódnak, míg egyes szabályozósejtjei gátlás alá kerülnek, ami végeredményben az immunrendszer egyensúlyának megbomlásával, proinflammatoricus állapottal jár. In vivo sóterheléses és sómegvonásos kísérletek eredményei a nátrium betegségkiváltó és -módosító szerepére utaltak. Így a nátrium és az immunrendszer összefüggése magyarázatot adhat olyan, eddig ismeretlen eredetű betegségek patomechanizmusára, mint a magas vérnyomás (elsődleges, sószenzitív) vagy az autoimmun betegségek, melyek növekvő incidenciájuk miatt nagy terhet rónak az egészségügyi ellátórendszerre. Orv Hetil. 2019; 160(17): 646–653.
Powles J, Fahimi S, Micha R, et al. Global, regional and national sodium intakes in 1990 and 2010: a systematic analysis of 24 h urinary sodium excretion and dietary surveys worldwide. BMJ Open 2013; 3: e003733.
WHO Guidelines Approved by the Guidelines Review Committee. Guideline: Sodium intake for adults and children. World Health Organization, Geneva, 2012.
Eckel RH, Jakicic JM, Ard JD, et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014; 63: 2960–2984.
Iatrino R, Manunta P, Zagato L. Salt sensitivity: challenging and controversial phenotype of primary hypertension. Curr Hypertens Rep. 2016; 18: 70.
Titze J, Krause H, Hecht H, et al. Reduced osmotically inactive Na storage capacity and hypertension in the Dahl model. Am J Physiol Renal Physiol. 2002; 283: F134–F141.
Titze J, Lang R, Ilies C, et al. Osmotically inactive skin Na+ storage in rats. Am J Physiol Renal Physiol. 2003; 285: F1108–F1117.
Sugár D, Agócs R, Tatár E, et al. The contribution of skin glycosaminoglycans to the regulation of sodium homeostasis in rats. Physiol Res. 2018; 67: 777–785.
Titze J, Shakibaei M, Schafflhuber M, et al. Glycosaminoglycan polymerization may enable osmotically inactive Na+ storage in the skin. Am J Physiol Heart Circ Physiol. 2004; 287: H203–H208.
Schafflhuber M, Volpi N, Dahlmann A, et al. Mobilization of osmotically inactive Na+ by growth and by dietary salt restriction in rats. Am J Physiol Renal Physiol. 2007; 292: F1490–F1500.
Wiig H, Schroder A, Neuhofer W, et al. Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J Clin Invest. 2013; 123: 2803–2815.
Olde Engberink RH, Rorije NM, van den Born BH, et al. Quantification of nonosmotic sodium storage capacity following acute hypertonic saline infusion in healthy individuals. Kidney Int. 2017; 91: 738–745.
Kopp C, Linz P, Wachsmuth L, et al. 23Na magnetic resonance imaging of tissue sodium. Hypertension 2012; 59: 167–172.
Linz P, Santoro D, Renz W, et al. Skin sodium measured with 23Na MRI at 7.0 T. NMR Biomed. 2015; 28: 54–62.
Sakata F, Ito Y, Mizuno M, et al. Sodium chloride promotes tissue inflammation via osmotic stimuli in subtotal-nephrectomized mice. Lab Invest. 2017; 97: 432–446.
Dahlmann A, Dorfelt K, Eicher F, et al. Magnetic resonance-determined sodium removal from tissue stores in hemodialysis patients. Kidney Int. 2015; 87: 434–441.
Hammon M, Grossmann S, Linz P, et al. 3 Tesla 23Na magnetic resonance imaging during acute kidney injury. Acad Radiol. 2017; 24: 1086–1093.
Kopp C, Linz P, Dahlmann A, et al. 23Na magnetic resonance imaging-determined tissue sodium in healthy subjects and hypertensive patients. Hypertension 2013; 61: 635–640.
Kopp C, Linz P, Maier C, et al. Elevated tissue sodium deposition in patients with type 2 diabetes on hemodialysis detected by 23Na magnetic resonance imaging. Kidney Int. 2018; 93: 1191–1197.
Kopp C, Beyer C, Linz P, et al. Na+ deposition in the fibrotic skin of systemic sclerosis patients detected by 23Na-magnetic resonance imaging. Rheumatology (Oxford) 2017; 56: 556–560.
McMaster WG, Kirabo A, Madhur MS, et al. Inflammation, immunity, and hypertensive end-organ damage. Circ Res. 2015; 116: 1022–1033.
Machnik A, Neuhofer W, Jantsch J, et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med. 2009; 15: 545–552.
Cheung CY, Ko BC. NFAT5 in cellular adaptation to hypertonic stress – regulations and functional significance. J Mol Signal. 2013; 8: 5.
Miyakawa H, Woo SK, Dahl SC, et al. Tonicity-responsive enhancer binding protein, a Rel-like protein that stimulates transcription in response to hypertonicity. Proc Natl Acad Sci USA 1999; 96: 2538–2542.
Xu S, Wong CC, Tong EH, et al. Phosphorylation by casein kinase 1 regulates tonicity-induced osmotic response element-binding protein/tonicity enhancer-binding protein nucleocytoplasmic trafficking. J Biol Chem. 2008; 283: 17624–17634.
Jantsch J, Schatz V, Friedrich D, et al. Cutaneous Na+ storage strengthens the antimicrobial barrier function of the skin and boosts macrophage-driven host defense. Cell Metab. 2015; 21: 493–501.
Kleinewietfeld M, Manzel A, Titze J, et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 2013; 496: 518–522.
Johnson ZI, Doolittle AC, Snuggs JW, et al. TNF-α promotes nuclear enrichment of the transcription factor TonEBP/NFAT5 to selectively control inflammatory but not osmoregulatory responses in nucleus pulposus cells. J Biol Chem. 2017; 292: 17561–17575.
Kojima R, Taniguchi H, Tsuzuki A, et al. Hypertonicity-induced expression of monocyte chemoattractant protein-1 through a novel cis-acting element and MAPK signaling pathways. J Immunol. 2010; 184: 5253–5262.
Kuper C, Beck FX, Neuhofer W. NFAT5 contributes to osmolality-induced MCP-1 expression in mesothelial cells. Mediators Inflamm. 2012; 2012: 513015.
Buxade M, Lunazzi G, Minguillon J, et al. Gene expression induced by Toll-like receptors in macrophages requires the transcription factor NFAT5. J Exp Med. 2012; 209: 379–393.
Shapiro L, Dinarello CA. Hyperosmotic stress as a stimulant for proinflammatory cytokine production. Exp Cell Res. 1997; 231: 354–362.
Choi SY, Lee HH, Lee JH, et al. TonEBP suppresses IL-10-mediated immunomodulation. Sci Rep. 2016; 6: 25726.
Esensten JH, Tsytsykova AV, Lopez-Rodriguez C, et al. NFAT5 binds to the TNF promoter distinctly from NFATp, c, 3 and 4, and activates TNF transcription during hypertonic stress alone. Nucleic Acids Res. 2005; 33: 3845–3854.
Favale NO, Casali CI, Lepera LG, et al. Hypertonic induction of COX2 expression requires TonEBP/NFAT5 in renal epithelial cells. Biochem Biophys Res Commun. 2009; 381: 301–305.
Yi B, Titze J, Rykova M, et al. Effects of dietary salt levels on monocytic cells and immune responses in healthy human subjects: a longitudinal study. Transl Res. 2015; 166: 103–110.
Zhou X, Zhang L, Ji WJ, et al. Variation in dietary salt intake induces coordinated dynamics of monocyte subsets and monocyte-platelet aggregates in humans: implications in end organ inflammation. PLoS ONE 2013; 8: e60332.
Müller S, Quast T, Schröder A, et al. Salt-dependent chemotaxis of macrophages. PLoS ONE 2013; 8: e73439.
Machnik A, Dahlmann A, Kopp C, et al. Mononuclear phagocyte system depletion blocks interstitial tonicity-responsive enhancer binding protein/vascular endothelial growth factor C expression and induces salt-sensitive hypertension in rats. Hypertension 2010; 55: 755–761.
Charalambous MP, Swoboda SM, Lipsett PA. Perioperative hypertonic saline may reduce postoperative infections and lower mortality rates. Surg Infect (Larchmt). 2008; 9: 67–74.
Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 2014; 41: 14–20.
Zhang WC, Zheng XJ, Du LJ, et al. High salt primes a specific activation state of macrophages, M(Na). Cell Res. 2015; 25: 893–910.
Binger KJ, Gebhardt M, Heinig M, et al. High salt reduces the activation of IL-4- and IL-13-stimulated macrophages. J Clin Invest. 2015; 125: 4223–4238.
Amara S, Whalen M, Tiriveedhi V. High salt induces anti-inflammatory MΦ2-like phenotype in peripheral macrophages. Biochem Biophys Rep. 2016; 7: 1–9.
Chessa F, Mathow D, Wang S, et al. The renal microenvironment modifies dendritic cell phenotype. Kidney Int. 2016; 89: 82–94.
Wu C, Yosef N, Thalhamer T, et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 2013; 496: 513–517.
Hernandez AL, Kitz A, Wu C, et al. Sodium chloride inhibits the suppressive function of FOXP3+ regulatory T cells. J Clin Invest. 2015; 125: 4212–4222.
Boissier MC, Assier E, Falgarone G, et al. Shifting the imbalance from Th1/Th2 to Th17/treg: the changing rheumatoid arthritis paradigm. Joint Bone Spine 2008; 75: 373–375.
Luo T, Ji WJ, Yuan F, et al. Th17/Treg imbalance induced by dietary salt variation indicates inflammation of target organs in humans. Sci Rep. 2016; 6: 26767.
Asarat M, Apostolopoulos V, Vasiljevic T, et al. Short-chain fatty acids regulate cytokines and Th17/Treg cells in human peripheral blood mononuclear cells in vitro. Immunol Invest. 2016; 45: 205–222.
Miranda PM, De Palma G, Serkis V, et al. High salt diet exacerbates colitis in mice by decreasing Lactobacillus levels and butyrate production. Microbiome 2018; 6: 57.
Wilck N, Matus MG, Kearney SM, et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 2017; 551: 585–589.
Zhang MZ, Yao B, Wang Y, et al. Inhibition of cyclooxygenase-2 in hematopoietic cells results in salt-sensitive hypertension. J Clin Investig. 2015; 125: 4281–4294.
Sumiyoshi M, Kitazato KT, Yagi K, et al. The accumulation of brain water-free sodium is associated with ischemic damage independent of the blood pressure in female rats. Brain Res. 2015; 1616: 37–44.
Paling D, Solanky BS, Riemer F, et al. Sodium accumulation is associated with disability and a progressive course in multiple sclerosis. Brain 2013; 136: 2305–2317.
Farez MF, Fiol MP, Gaitan MI, et al. Sodium intake is associated with increased disease activity in multiple sclerosis. J Neurol Neurosurg Psychiatry 2015; 86: 26–31.
Brown IJ, Tzoulaki I, Candeias V, et al. Salt intakes around the world: implications for public health. Int J Epidemiol. 2009; 38: 791–813.
Wei Y, Lu C, Chen J, et al. High salt diet stimulates gut Th17 response and exacerbates TNBS-induced colitis in mice. Oncotarget 2017; 8: 70–82.
Monteleone I, Marafini I, Dinallo V, et al. Sodium chloride-enriched diet enhanced inflammatory cytokine production and exacerbated experimental colitis in mice. J Crohns Colitis 2017; 11: 237–245.
Khalili H, Malik S, Ananthakrishnan AN, et al. Identification and characterization of a novel association between dietary potassium and risk of Crohn’s disease and ulcerative colitis. Front Immunol. 2016; 7: 554.
Wen W, Wan Z, Ren K, et al. Potassium supplementation inhibits IL-17A production induced by salt loading in human T lymphocytes via p38/MAPK-SGK1 pathway. Exp Mol Pathol. 2016; 100: 370–377.