A 2017-ben mintegy 451 millió, diabetesben szenvedő emberben potenciálisan kialakuló hosszú távú szövődmények és a hyperglykaemia között fennálló kapcsolatot a nagyobb mértékben keletkező késői glikációs végtermékek, valamint a fokozott oxidatív és karbonilstressz jelentheti. A részben karbonilstressz révén keletkező késői glikációs végtermékek szerepét olyan szövődményekben írták le, mint az érfalvastagodás, a megnövekedett érfal-áteresztőképesség, a fokozott mértékű angiogenezis vagy a csökkent érfalrugalmasság okozta nephropathia, neuropathia, retinopathia. A sort folytathatnánk a megnövekedett thrombocytaaggregációval, a csökkent fibrinolízis kiváltotta fokozott koagulációs aktivitással vagy az atherosclerosissal, illetve a mitokondriális diszfunkcióval. Mind az oxidatív, mind a nem oxidatív késői glikációs végtermék képződésének legpotensebb támadási pontja az α,β-telítetlen aldehidek befogása lehet. Sajnálatos módon a befogó molekulák prototípusát jelentő aminoguanidin, bár különböző állatmodelleken sikeresnek bizonyult, a klinikai teszteken nem bizonyított, a vele kapcsolatos klinikai vizsgálatokat közel 20 évvel ezelőtt leállították. Az aminoguanidin mellett nagy várakozás övezte az endogén dipeptid L-karnozint, amely szintén hatásosan csökkenti a karbonilstresszt. Ez esetben a humán alkalmazást az emberekben jelen lévő specifikus szérumkarnozinázok, az alacsony szérumstabilitás és a biológiai hasznosulás limitálta. A múlt év végén a molekula karboxilcsoportjának hidroxilcsoportra történő cseréjével sikerült elérni, hogy ellenálló legyen a karnozinázoknak, ugyanakkor megőrizze biológiai biztonságát és karbonilstresszt csökkentő hatását. Bár a karnozinol kifejlesztése óta eltelt mindössze fél év nem tette lehetővé, hogy klinikai teszteken bizonyítson, a molekulával kapcsolatban elért in vitro és in vivo eredmények alapján ígéretes hatóanyagnak tűnik a diabetes szövődményeinek mérséklésére, megelőzésére, így a klinikusnak is érdemes nyomon követni a vele kapcsolatos híreket, eredményeket. Orv Hetil. 2019; 160(40): 1567–1573.
International Diabetes Federation. IDF Diabetes Atlas, 8th edn. International Diabetes Federation, Brussels, 2017. Available from: http://www.diabetesatlas.org [accessed: June 1, 2019].
Bellier J, Nokin MJ, Lardé E, et al. Methylglyoxal, a potent inducer of AGEs, connects between diabetes and cancer. Diabetes Res Clin Pract. 2019; 148: 200–211.
Yamagishi S, Maeda S, Matsui T, et al. Role of advanced glycation end products (AGEs) and oxidative stress in vascular complications in diabetes. Biochim Biophys Acta 2012; 1820: 663–671.
Nemoto S, Takeda K, Yu ZX, et al. Role for mitochondrial oxidants as regulators of cellular metabolism. Mol Cell Biol. 2000; 20: 7311–7318.
Sies, H. Biochemistry of oxidative stress. Angew Chem Int. 1986; 25: 1058–1071.
Dalleau S, Baradat M, Guéraud F, et al. Cell death and diseases related to oxidative stress: 4-hydroxynonenal (HNE) in the balance. Cell Death Differ. 2013; 20: 1615–1630.
Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004; 114: 1752–1761.
Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med. 1991; 11: 81–128.
Curtis JM, Hahn WS, Long EK, et al. Protein carbonylation and metabolic control systems. Trends Endocrinol Metab. 2012; 23: 399–406.
Schaur RJ. Basic aspects of the biochemical reactivity of 4-hydroxynonenal. Mol Aspects Med. 2003; 24; 149–159.
Poli G, Biasi F, Leonarduzzi G. 4-Hydroxynonenal-protein adducts: a reliable biomarker of lipid oxidation in liver diseases. Mol Aspects Med. 2008; 29: 67–71.
Aldini G, Dalle-Donne I, Facino RM, et al. Intervention strategies to inhibit protein carbonylation by lipoxidation-derived reactive carbonyls. Med Res Rev. 2007; 27: 817–868.
Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414: 813–820.
Fishman SL, Sonmez H, Basman C, et al. The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: a review. Mol Med. 2018; 24: 59.
Yan H, Harding JJ. Glycation-induced inactivation and loss of antigenicity of catalase and superoxide dismutase. Biochem J. 1997; 328: 599–605.
Tessier FJ. The Maillard reaction in the human body. The main discoveries and factors that affect glycation. Pathol Biol. 2010; 58: 214–219.
Turk Z. Glycotoxines, carbonyl stress and relevance to diabetes and its complications. Physiol Res. 2010; 59: 147–156.
Wells-Knecht KJ, Zyzak DV, Litchfield JE, et al. Mechanism of autoxidative glycosylation: identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose. Biochemistry 1995; 34: 3702–3709.
Fu MX, Requena JR, Jenkins AJ, et al. The advanced glycation end product, Nε-(carboxymethyl)lysine, is a product of both lipid peroxidation and glycoxidation reactions. J Biol Chem. 1996; 271: 9982–9986.
Lu C, He JC, Cai W, et al. Advanced glycation endproduct (AGE) receptor 1 is a negative regulator of the inflammatory response to AGE in mesangial cells. Proc Natl Acad Sci USA 2004; 101: 11767–11772.
Vlassara H, Uribarri J. Advanced glycation end products (AGE) and diabetes: cause, effect, or both? Curr Diab Rep. 2014; 14: 453.
Coughlan MT, Thorburn DR, Penfold SA, et al. RAGE-induced cytosolic ROS promote mitochondrial superoxide generation in diabetes. J Am Soc Nephrol. 2009; 20: 742–752.
Goldin A, Beckman JA, Schmidt AM, et al. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 2006; 114: 597–605.
Prevost G, Fajardy I, Besmond C, et al. Polymorphisms of the receptor of advanced glycation endproducts (RAGE) and the development of nephropathy in type 1 diabetic patients. Diabetes Metab. 2005; 31: 35–39.
Adamopoulos C, Farmaki E, Spilioti E, et al. Advanced glycation end-products induce endoplasmic reticulum stress in human aortic endothelial cells. Clin Chem Lab Med. 2014; 52: 151–160.
Merzouk S, Hichami A, Madani S, et al. Antioxidant status and levels of different vitamins determined by high performance liquid chromatography in diabetic subjects with multiple complications. Gen Physiol Biophys. 2003; 22: 15–27.
Sztanek F, M Molnár Á, Balogh Z. The role of oxidative stress in the development of diabetic neuropathy. [Az oxidatív stressz szerepe a diabeteses neuropathia kialakulásában.] Orv Hetil. 2016; 157: 1939–1946. [Hungarian]
Morgan PE, Dean RT, Davies MJ. Inactivation of cellular enzymes by carbonyls and protein-bound glycation/glycoxidation products. Arch Biochem Biophys. 2002; 403: 259–269.
Aronson D. Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. J Hypertens. 2003; 21: 3–12.
Takenaka K, Yamagishi S, Matsui T, et al. Role of advanced glycation end products (AGEs) in thrombogenic abnormalities in diabetes. Curr Neurovasc Res. 2006; 3: 73–77.
Zieman SJ, Kass DA. Advanced glycation endproduct crosslinking in the cardiovascular system: potential therapeutic target for cardiovascular disease. Drugs 2004; 64: 459–470.
Yerneni KK, Bai W, Khan BV, et al. Hyperglycemia-induced activation of nuclear transcription factor κB in vascular smooth muscle cells. Diabetes 1999; 48: 855–864.
Ghafourifar P, Bringold U, Klein SD, et al. Mitochondrial nitric oxide synthase, oxidative stress and apoptosis. Biol Signals Recept. 2001; 10: 57–65.
Shakher J, Stevens MJ. Update on the management of diabetic polyneuropathies. Diabetes Metab Syndr Obes. 2011; 4: 289–305.
Bierhaus A, Hofmann MA, Ziegler R, et al. AGEs and their interaction with AGE-receptors in vascular disease and diabetes mellitus. I. The AGE concept. Cardiovasc Res. 1998; 37: 586–600.
Koya D, Haneda M, Nakagawa H, et al. Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC β inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes. FASEB J. 2000; 14: 439–447.
Das Evcimen N, King GL. The role of protein kinase C activation and the vascular complications of diabetes. Pharmacol Res. 2007; 55: 498–510.
Kern TS, Engerman RL. Pharmacological inhibition of diabetic retinopathy: aminoguanidine and aspirin. Diabetes 2001; 50: 1636–1642.
Forbes JM, Yee LT, Thallas V, et al. Advanced glycation end product interventions reduce diabetes-accelerated atherosclerosis. Diabetes 2004; 53: 1813–1823.
Stadler K, Jenei V, Somogyi A, et al. Beneficial effects of aminoguanidine on the cardiovascular system of diabetic rats. Diabetes Metab Res Rev. 2005; 21: 189–196.
Bolton WK, Cattran DC, Williams ME, et al., for the ACTION I Investigator Group. Randomized trial of an inhibitor of formation of advanced glycation end products in diabetic nephropathy. Am J Nephrol. 2004; 24: 32–40.
Freedman BI, Wuerth JP, Cartwright K, et al. Design and baseline characteristics for the aminoguanidine clinical trial in overt Type 2 diabetic nephropathy (ACTION II). Control Clin Trials 1999; 20: 493–510.
Boldyrev AA, Aldini G, Derave W. Physiology and pathophysiology of carnosine. Physiol Rev. 2013; 93: 1803–1845.
Anderson EJ, Vistoli G, Katunga LA, et al. A carnosine analog mitigates metabolic disorders of obesity by reducing carbonyl stress. J Clin Invest. 2018; 128: 5280–5293.
Janssen B, Hohenadel D, Brinkkoetter P, et al. Carnosine as a protective factor in diabetic nephropathy: association with a leucine repeat of the carnosinase gene CNDP1. Diabetes 2005; 54: 2320–2327.
Ahluwalia TS, Lindholm E, Groop LC. Common variants in CNDP1 and CNDP2, and risk of nephropathy in type 2 diabetes. Diabetologia 2011; 54: 2295–2302.