View More View Less
  • 1 Semmelweis Egyetem, Általános Orvostudományi Kar, Budapest
  • 2 Semmelweis Egyetem, Általános Orvostudományi Kar, Budapest, Városmajor u. 68., 1122
Open access

Absztrakt:

A postresuscitatiós terápia egyik legfontosabb eleme a neuroprotekció, mivel a sikeres újraélesztésen átesett betegek fő mortalitási tényezője a postresuscitatiós agyi károsodás. A tudomány mai állása szerint a jelenleg elérhető neuroprotekciós módszerek célja, hogy megelőzzék a primer agykárosodás kiterjedését és a szekunder agykárosodás kialakulását. Közleményünkben részletezzük a ma rendelkezésre álló neuroprotekciós lehetőségeket, külön kitérve az egyes farmakológiai ágensek és ezen belül a szedáció szerepére, az agyi perfúzió fenntartásának lehetőségeire, a megfelelő hemodinamikai paraméterek monitorozására és kiválasztására, valamint a célhőmérséklet-orientált kezelésre. A postresuscitatiós betegek ellátása során fontos, hogy kerüljük a hypoxiát és hyperoxiát, normocapniára és normoglykaemiára törekedjünk, valamint a görcstevékenységet azonnal uraljuk. Egyelőre nincs még egyértelmű bizonyíték arra vonatkozóan, hogy melyik gyógyszer alkalmazása segíthet a postresuscitatiós neuroprotekcióban. A tiamin ez irányú vizsgálata során biztató eredmények születtek. Az agyi perfúzió javítása céljából fontos lehet a magasabb szintű hemodinamikai monitorozás és az általa vezérelt terápia, de ennek bizonyítása szintén további tanulmányok elvégzését igényli. A postresuscitatiós neuroprotekció fő elemét a célhőmérséklet-orientált kezelés képezi, kivitelezésének részletei azonban szintén számos kérdést vetnek fel. Orv Hetil. 2019; 160(46): 1832–1839.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Berdowski J, Berg RA, Tijssen JG, et al. Global incidences of out-of-hospital cardiac arrest and survival rates: systematic review of 67 prospective studies. Resuscitation 2010; 81: 1479–1487.

  • 2

    Perkins GD, Handley AJ, Koster RW, et al. European Resuscitation Council Guidelines for Resuscitation 2015: Section 2. Adult basic life support and automated external defibrillation. Resuscitation 2015; 95: 81–99.

  • 3

    Nagy F, Szabó-Némedi N. Resuscitation guidelines of the European Resuscitation Council and the Hungarian Resuscitation Council 2015. [Az Európai Resuscitatiós Társaság (ERC) és a Magyar Resuscitatiós Társaság (MRT) Újraélesztés Ajánlása 2015.] Magy Mentésügy 2015; 2: 6–34. [Hungarian]

  • 4

    Nolan JP, Soar J, Cariou A, et al. European Resuscitation Council and European Society of Intensive Care Medicine Guidelines for Post-resuscitation Care 2015. Section 5 of the European Resuscitation Council Guidelines for Resuscitation 2015. Resuscitation 2015; 95: 202–222.

  • 5

    Laver S, Farrow C, Turner D, et al. Mode of death after admission to an intensive care unit following cardiac arrest. Intensive Care Med. 2004; 30: 2126–2128.

  • 6

    Krumholz A, Stern BJ, Weiss HD. Outcome from coma after cardiopulmonary resuscitation: relation to seizures and myoclonus. Neurology 1988; 38: 401–405.

  • 7

    Bano D, Nicotera P. Ca2+ signals and neuronal death in brain ischemia. Stroke 2007; 38: 674–676.

  • 8

    Pulsinelli WA. Selective neuronal vulnerability: morphological and molecular characteristics. Prog Brain Res. 1985; 63: 29–37.

  • 9

    Sundgreen C, Larsen FS, Herzog TM, et al. Autoregulation of cerebral blood flow in patients resuscitated from cardiac arrest. Stroke 2001; 32: 128–132.

  • 10

    Müllner M, Sterz F, Binder M, et al. Arterial blood pressure after human cardiac arrest and neurological recovery. Stroke 1996; 27: 59–62.

  • 11

    Vereczki V, Martin E, Rosenthal RE, et al. Normoxic resuscitation after cardiac arrest protects against hippocampal oxidative stress, metabolic dysfunction, and neuronal death. J Cereb Blood Flow Metab. 2006; 26: 821–835.

  • 12

    Adrie C, Adib-Conquy M, Laurent I, et al. Successful cardiopulmonary resuscitation after cardiac arrest as a “sepsis-like” syndrome. Circulation 2002; 106: 562–568.

  • 13

    Helmerhost HJ, Roos-Bloom MJ, van Westerloo DJ, et al. Associations of arterial carbon dioxide and arterial oxygen concentrations with hospital mortality after resuscitation from cardiac arrest. Crit Care 2015; 19: 348.

  • 14

    Becker LB. New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovasc Res. 2004; 61: 461–470.

  • 15

    Kilgannon JH, Jones AE, Shapiro NI, et al. Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA 2010; 303: 2165–2171.

  • 16

    Kilgannon JH, Jones AE, Parrillo JE, et al. Relationship between supranormal oxygen tension and outcome after resuscitation from cardiac arrest. Circulation 2011; 123: 2717–2722.

  • 17

    Schneider AG, Eastwood GM, Bellomo R, et al. Arterial carbon dioxide tension and outcome in patients admitted to the intensive care unit after cardiac arrest. Resuscitation 2013; 84: 927–934.

  • 18

    Wang CH, Huang CH, Chang WT, et al. Associations between blood glucose level and outcomes of adult in-hospital cardiac arrest: a retrospective cohort study. Cardiovasc Diabetol. 2016; 15: 118.

  • 19

    Beiser DG, Carr GE, Edelson DP, et al. Derangements in blood glucose following initial resuscitation from in-hospital cardiac arrest: a report from the national registry of cardiopulmonary resuscitation. Resuscitation 2009; 80: 624–630.

  • 20

    Egi M, Bellomo R, Stachowski E, et al. Blood glucose concentration and outcome of critical illness: the impact of diabetes. Crit Care Med. 2008; 36: 2249–2255.

  • 21

    Arabi YM, Tamim HM, Rishu AH. Hypoglycemia with intensive insulin therapy in critically ill patients: predisposing factors and association with mortality. Crit Care Med. 2009; 37: 2536–2544.

  • 22

    Dell’Anna AM, Taccone FS, Halenarova K, et al. Sedation after cardiac arrest and during therapeutic hypothermia. Minerva Anestesiol. 2014; 80: 954–962.

  • 23

    Bjelland TW, Dale O, Kaisen K, et al. Propofol and remifentanil versus midazolam and fentanyl for sedation during therapeutic hypothermia after cardiac arrest: a randomised trial. Intensive Care Med. 2012; 38: 959–967.

  • 24

    Crepeau AZ, Britton JW, Fugate JE, et al. Electroencephalography in survivors of cardiac arrest: comparing pre- and post-therapeutic hypothermia eras. Neurocrit Care 2015; 22: 165–172.

  • 25

    Gupta HV, Caviness JN. Post-hypoxic myoclonus: current concepts, neurophysiology, and treatment. Tremor Other Hyperkinet Mov. 2016; 6: 409.

  • 26

    Wilhelm S, Ma D, Maze M, et al. Effects of xenon on in vitro and in vivo models of neuronal injury. Anesthesiology 2002; 96: 1485–1491.

  • 27

    Laitio R, Hynninen M, Arola O, et al. Effect of inhaled xenon on cerebral white matter damage in comatose survivors of out-of-hospital cardiac arrest: a randomized clinical trial. JAMA 2016; 315: 1120–1128.

  • 28

    Cariou A, Deye N, Vivien B, et al. Early high-dose erythropoietin therapy after out-of-hospital cardiac arrest: a multicenter, randomized controlled trial. J Am Coll Cardiol. 2016; 68: 40–49.

  • 29

    Qiu Y, Wu Y, Meng M, et al. Rosuvastatin improves myocardial and neurological outcomes after asphyxial cardiac arrest and cardiopulmonary resuscitation in rats. Biomed Pharmacother. 2017; 87: 503–508.

  • 30

    Ikeda K, Liu X, Kida K, et al. Thiamine as a neuroprotective agent after cardiac arrest. Resuscitation 2016; 105: 138–144.

  • 31

    Moore JC, Bartos JA, Matsuura TR, et al. The future is now: neuroprotection during cardiopulmonary resuscitation. Curr Opin Crit Care 2017; 23: 215–222.

  • 32

    Trzeciak S, Jones AE, Kilgannon JH, et al. Significance of arterial hypotension after resuscitation from cardiac arrest. Crit Care Med. 2009; 37: 2895–2903.

  • 33

    Bro-Jeppesen J, Annborn M, Hassager C, et al. Hemodynamics and vasopressor support during targeted temperature management at 33 °C versus 36 °C after out-of-hospital cardiac arrest: a post hoc study of the target temperature management trial. Crit Care Med. 2015; 43: 318–327.

  • 34

    Cecconi M, De Backer D, Antonelli M, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014; 40: 1795–1815.

  • 35

    Tagami T, Kushimoto S, Tosa R, et al. The precision of PiCCO® measurements in hypothermic post-cardiac arrest patients. Anaesthesia 2012; 67: 236–243.

  • 36

    Kovács E, Pilecky D, Szudi G, et al. The use of invasive hemodynamic monitoring during post-resuscitation therapeutic hypothermia (preliminary data). [Az invazív hemodinamikai monitorozás szerepe a súlyos állapotú postresuscitatiós betegek ellátásában (előzetes adatok).] Cardiol Hung. 2015; 45: 90–95. [Hungarian]

  • 37

    Oksanen T, Skrifvars M, Wilkman E. et al. Postresuscitation hemodynamics during therapeutic hypothermia after out-of-hospital cardiac arrest with ventricular fibrillation: a retrospective study. Resuscitation 2014; 85: 1018–1024.

  • 38

    Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002; 346: 549–556. Correction: N Engl J Med. 2002; 346: 1756.

  • 39

    Bernard SA, Gray TW, Buist MD, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002; 346: 557–563.

  • 40

    Nolan JP, Deakin CD, Soar J, et al. European Resuscitation Council Guidelines for Resuscitation 2005: Section 4. Adult advanced life support. Resuscitation 2005; 67(Suppl 1): S39–S86.

  • 41

    Nielsen N, Wetterslev J, Cronberg T, et al. Targeted temperature management at 33 ºC versus 36 ºC after cardiac arrest. N Engl J Med. 2013; 369: 2197–2206.

  • 42

    Geocadin RG, Wijdicks E, Armstrong MJ, et al. Practice guideline summary: reducing brain injury following cardiopulmonary resuscitation. Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 2017; 88: 2141–2149.

  • 43

    Arrich J, Holzer M, Havel C, et al. Pre-hospital versus in-hospital initiation of cooling for survival and neuroprotection after out-of-hospital cardiac arrest (Review). Cochrane Database Syst Rev. 2016; 3: CD010570.

 

The author instructions are available in PDF.
Instructions for Authors in Hungarian HERE.

 

Mendeley citation style is available HERE.
  • Impact Factor (2019): 0.497
  • Scimago Journal Rank (2018): 0.176
  • SJR Hirsch-Index (2018): 20
  • SJR Quartile Score (2018): Q3 Medicine (miscellaneous)
  • Impact Factor (2018): 0.564
  • Scimago Journal Rank (2018): 0.193
  • SJR Hirsch-Index (2018): 18
  • SJR Quartile Score (2018): Q3 Medicine (miscellaneous)

Language: Hungarian

Founded in 1857
Publication: Weekly, one volume of 52 issues annually

Senior editors

Editor(s)-in-Chief: Papp Zoltán

Read the professional career of Papp Zoltán HERE.

 

Editorial Board

Click for the Editorial Board

Akadémiai Kiadó
Address: Prielle Kornélia u. 21-35. H-1117 Budapest, Hungary
Phone: (+36 1) 464 8235 ---- Fax: (+36 1) 464 8221
Email: orvosihetilap@akkrt.hu