View More View Less
  • 1 Észak-Közép-budai Centrum, Új Szent János Kórház és Szakrendelő, Budapest, Diós árok 1–3., 1125
  • 2 Miskolci Egyetem, Egészségügyi Kar, Miskolc
  • 3 Budai Irgalmasrendi Kórház, Budapest
Open access

Absztrakt:

A glükagonszerű peptid-1 (GLP1) és receptoragonistái – a szénhidrát-anyagcserét érintő, valamint centrális, központi idegrendszeri hatásaik mellett – számos vonatkozásban érintik a gyomor-bél rendszer működését is. Lassítják a gyomor ürülését, a vékony- és vastagbél motilitását – az ileumperistaltica „fékezésére” utal az irodalmi összefoglalásokban szereplő „ileal brake” elnevezés –, serkentik az exocrin pancreas acinussejtjeinek működését és az amiláztermelést. A GLP1-receptor-agonisták napjainkban a 2-es típusú diabetes vércukorcsökkentő kezelésének meghatározó készítményei. A terápiás eszköztárába került hosszú, illetve rövid hatású változatok eltérően befolyásolják az éhomi és az étkezés utáni vércukorszintet. A készítmények ennek szem előtt tartásával történő – az újabb vizsgálatok fényében erőltetettnek ható – nem prandialis, illetve prandialis csoportosításával óhatatlanul a gyomorürülés befolyásolása került a figyelem előterébe, holott – különösen a hosszú hatású változatok esetében – legalább ilyen körültekintés szükséges a bélműködés vonatkozásában is. A közlemény áttekinti a GLP1 gastrointestinumot érintő élettani hatásait, és felhívja a figyelmet a lehetséges mellékhatások betegtájékoztatással és dietoterápiás módszerekkel történő megelőzési lehetőségeire. Orv Hetil. 2019; 160(49): 1927–1934.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Winkler G. The place of long-term GLP-1 receptor agonists in the therapy of type 2 diabetes – the present possibilities in Hungary. [A hosszú hatású GLP-1 receptor agonisták helye a 2-es típusú diabetes kezelésében – a jelen hazai lehetőségek.] Diabetol Hung. 2019; 37(2): 91–100. [Hungarian]

  • 2

    Dungan K, DeSantis A. Glucagon-like peptide-1 receptor agonists for the treatment of type 2 diabetes mellitus. UpToDate. Wolters Kluwer, Alphen aan den Rijn, 2019. 05. 22.; pp. 1–18. https://www.uptodate.com/contents/glucagon-like-peptide-1-receptor-agonists-for-the-treatment-of-type-2-diabetes-mellitus.

  • 3

    Madsbad S. Growing experience with GLP-1 receptor agonists. Medicographia 2017; 39(3): 219–227.

  • 4

    Owens DR, Monnier L, Hanefeld M. A review of glucagon-like peptide-1 receptor agonists and their effects on lowering postprandial plasma glucose and cardiovascular outcomes in the treatment of type 2 diabetes mellitus. Diabetes Obes Metab. 2017; 19: 1645–1654.

  • 5

    Miñambres I, Pérez A. Is there a justification for classifying GLP-1 receptor agonists as basal and prandial? Diabetol Metab Syndr. 2017; 9: 6. .

    • Crossref
    • Export Citation
  • 6

    Meier JJ, Rosenstock J, Hincelin-Méry A, et al. Contrasting effects of lixisenatide and liraglutide on postprandial glycemic control, gastric emptying, and safety parameters in patients with type 2 diabetes on optimized insulin glargine with or without metformin: a randomized, open-label trial. Diabetes Care 2015; 38: 1263–1273.

  • 7

    Lebrun LJ, Lenaerts K, Kiers D, et al. Enteroendocrine L cells sense LPS after gut barrier injury to enhance GLP-1 secretion. Cell Rep. 2017; 21: 1160–1168.

  • 8

    Rowlands J, Heng J, Newsholme P, et al. Pleiotropic effects of GLP-1 and analogs on cell signaling, metabolism, and function. Front Endocrinol. 2018; 9: 672. .

    • Crossref
    • Export Citation
  • 9

    Greiner TU, Bäckhed F. Microbial regulation of GLP-1 and L-cell biology. Mol Metab. 2016; 5: 753–758.

  • 10

    Latorre R, Sternini C, De Giorgio R, et al. Enteroendocrine cells: a review of their role in brain–gut communication. Neurogastroenterol Motil. 2016; 28: 620–630.

  • 11

    Moran-Ramos S, Tovar AR, Torres N. Diet: friend or foe of enteroendocrine cells – how it interacts with enteroendocrine cells. Adv Nutr. 2012; 3: 8–20.

  • 12

    Worthington JJ. The intestinal immunoendocrine axis: novel cross-talk between enteroendocrine cells and the immune system during infection and inflammatory disease. Biochem Soc Trans. 2015; 43: 727–733.

  • 13

    Symonds EL, Peiris M, Page AJ, et al. Mechanisms of activation of mouse and human enteroendocrine cells by nutrients. Gut 2015; 64: 618–626.

  • 14

    Jorsal T, Rhee NA, Pedersen J, et al. Enteroendocrine K and L cells in healthy and type 2 diabetic individuals. Diabetologia 2018; 61: 284–294.

  • 15

    Arora T, Akrami R, Pais R, et al. Microbial regulation of the L-cell transcriptome. Sci Rep. 2018; 8: 1207. .

    • Crossref
    • Export Citation
  • 16

    Thombare K, Ntika S, Wang X, et al. Long chain saturated and unsaturated fatty acids exert opposing effects on viability and function of GLP-1-producing cells: mechanisms of lipotoxicity. PLoS ONE 2017; 12: e0177605. https://doi.org/10.1371/journal.pone.0177605.

  • 17

    Eda H, Fukui H, Uchiyama R, et al. Effect of Helicobacter pylori infection on the link between GLP-1 expression and motility of the gastrointestinal tract. PLoS ONE 2017; 12: e0177232. https://doi.org/10.1371/journal.pone.0177232.

  • 18

    Janssen P, Rotondo A, Mulé F, et al. Review article: a comparison of glucagon-like peptides 1 and 2. Aliment Pharmacol Ther. 2013; 37: 18–36.

  • 19

    Moran AW, Al-Rammahi MA, Batchelor DJ, et al. Glucagon-like peptide-2 and the enteric nervous system are components of cell-cell communication pathway regulating intestinal Na+/glucose co-transport. Front Nutr. 2018; 5: 101. https://doi.org/10.3389/fnut.2018.00101.

  • 20

    Hope DC, Tan TM, Bloom SR. No guts, no loss: toward to the ideal treatment for obesity in the twenty first centrury. Front Endocrinol. 2018; 9: 442. https://doi.org/10.3389/fendo.2018.00442.

  • 21

    Bliss ES, Whiteside E. The gut-brain axis, the human gut microbiota and their integration in the development of obesity. Front Physiol. 2018; 9: 900. .

    • Crossref
    • Export Citation
  • 22

    Thorkildsen C, Neve S, Larsen BD, et al. Glucagon-like peptide 1 receptor agonist ZP10A increases insulin mRNA expression and prevents diabetic progression in db/db mice. J Pharmacol Exp Ther. 2003; 307: 490–496.

  • 23

    Yang D, de Graaf C, Yang L, et al. Structural determinants of binding the seven-transmembrane domain of the glucagon-like peptide-1 receptor (GLP-1R). J Biol Chem. 2016; 291: 1291–1304.

  • 24

    Marathe CS, Rayner CK, Jones KI, et al. Effects of GLP-1 and incretin-based therapies on gastrointestinal motor function. Exp Diabetes Res. 2011; 2011: 279530. .

    • Crossref
    • Export Citation
  • 25

    Nakatani Y, Maeda M, Matsumura M, et al. Effect of GLP-1 receptor agonist on gastrointestinal tract motility and residue rates as evaluated by capsula endoscopy. Diabetes Metab. 2017; 43: 430–437.

  • 26

    Umapathysivam MM, Lee MY, Jones KL, et al. Comparative effects of prolonged and intermittent stimulation of glucagon-like peptide 1 receptor on gastric emptying and glycemia. Diabetes 2014; 63: 785–790.

  • 27

    Tong J, D’Alessio D. Give the receptor a brake: slowing gastric emptying by GLP-1. Diabetes 2014; 63: 407–409.

  • 28

    Hinnen D. Glucagon-like peptide-1 receptor agonists for type 2 diabetes. Diabetes Spectr. 2017; 30: 202–210.

  • 29

    Odawara M, Miyagawa J, Iwamoto N, et al. Once-weekly glucagon-like peptide-1 receptor agonist dulaglutide significantly decreases glycated haemoglobin compared with once-daily liraglutide in Japanese patients with type 2 diabetes: 52 weeks of treatment in a randomized phase III study. Diabetes Obes Metab. 2016; 18: 249–257.

  • 30

    Davies MJ, D’Alessio DA, Fradkin J, et al. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2018; 61: 2461–2498 and Diabetes Care 2018; 41: 2669–2701. [Simultaneously published]

  • 31

    Andersen A, Lund A, Knop FK, et al. Glucagon-like peptide 1 in health and disease. Nat Rev Endocrinol. 2018; 14: 390–403.

  • 32

    Triplitt C, Solis-Herrera C. GLP-1 receptor agonists. Practical considerations for clinical practice. Diabetes Educ. 2015; 41 (Suppl 1): 32S–46S.

  • 33

    Madsbad S, Holst JJ. Treatment with GLP-1 receptor agonists. In: Bonora E, DeFronzo R. (eds.) Diabetes. Epidemiology, Genetics, Pathogenesis, Diagnosis, Prevention and Treatment. Endrocrinology. Springer Nature, Basel, 2018; pp. 1–45. On-line ISBN 978-3-319-27317-4. https://doi.org/10.1007/978-3-319-27317-4_20-1.

  • 34

    Tella SH, Rendell MS. Glucagon-like polypeptide agonists in type 2 diabetes mellitus: efficacy and tolerability, a balance. Ther Adv Endocrinol Metab. 2015; 6: 109–134.

  • 35

    Brown E, Wilding JP, Barber TM, et al. Weight loss variability with SGLT2 inhibitors, and GLP-1 receptor agonists in type 2 diabetes mellitus and obesity: mechanistic possibilities. Obes Rev. 2019; 20: 816–828.

  • 36

    Sharma D, Verma S, Vaidya S, et al. Recent updates on GLP-1 agonists: current advancements & challenges. Biomed Pharmacother. 2018; 108: 952–962.

  • 37

    Buse JB, Nauck M, Forst T, et al. Exenatide once weekly versus liraglutide once daily in patients with type 2 diabetes (DURATION-6): a randomised, open-label study. Lancet 2013; 381: 117–124.

  • 38

    Dungan KM, Povedano ST, Forst T, et al. Once-weekly dulaglutide versus once-daily liraglutide in metformin-treated patients with type 2 diabetes (AWARD 6): a randomised, open-label phase 3 non-inferiority trial. Lancet 2014; 384: 1349–1357.

  • 39

    Ahmann AJ, Capehorn M, Charpentier G, et al. Efficacy and safety of once-weekly semaglutide versus exenatide ER in subjects with type 2 diabetes (SUSTAIN 2): a 56-week open-label, randomized clinical trial. Diabetes Care 2018; 41: 258–266.

  • 40

    Pratley RE, Aroda VR, Lingvay J, et al. SUSTAIN 7 investigators: semaglutide versus dulaglutide once weekly in patients with type 2 diabetes (SUSTAIN 7): a randomised, open-label, phase 3b trial. Lancet Diabetes Endocrinol. 2018; 6: 275–286.

  • 41

    Nauck MA, Rizzo M, Johnson A, et al. Once-daily liraglutide versus lixisenatide as add-on to metformin in type 2 diabetes: a 26-week randomized controlled clinical trial. Diabetes Care 2016; 39: 1501–1509.

  • 42

    Busch RS, Ruggles J, Han J, et al. Effects of exenatide twice daily, exenatide once weekly or insulin in patients with type 2 diabetes and baseline HbA1c ≥11.0%: two pooled analyses including 20 randomised controlled trials. Int J Clin Pract. 2017; 71: e13029. https://doi.org/10.1111/ijcp.13029.

  • 43

    Sikirica MV, Martin AA, Wood R, et al. Reasons for discontinuation of GLP1 receptor agonists: data from a real-world cross-sectional survey of physicians and their patients with type 2 diabetes. Diabetes Metab Syndr Obes. 2017; 10: 403–412. . eCollection 2017.

    • Crossref
    • Export Citation
  • 44

    Chis BA, Fodor D. Acute pancreatitis during GLP-1 receptor agonist treatment. A case report. Clujul Med. 2018; 91: 117–119.

  • 45

    Storgaard H, Cold F, Gluud LL, et al. Glucagon-like peptide-1 receptor agonists and risk of acute pancreatitis in patients with type 2 diabetes. Diabetes Obes Metab. 2017; 19: 906–908.

  • 46

    Nauck MA, Meier JJ, Schmidt WE. Incretin-based glucose-lowering medications and the risk of acute pancreatitis and/or pancreatic cancer: Reassuring data from cardiovascular outcome trials. Diabetes Obes Metab. 2017; 19: 1327–1328.

  • 47

    Saisho Y. Incretin-based therapy and pancreatitis: accumulating evidence and unresolved questions. Ann Transl Med. 2018; 6: 131. .

    • Crossref
    • Export Citation
  • 48

    Ho Y, Ernst SA, Heidenreich K, et al. Gucagon-like peptide-1 receptor is present in pancreatic acinar cells and regulates amylase secretion through cAMP. Am J Physiol Gastrointest Liver Physiol. 2016; 310: G26–G33.

  • 49

    Pinto LC, Falcetta MR, Rados DV, et al. Glucagon-like peptide-1 receptor agonists and pancreatic cancer: a meta-analysis with trial sequential analysis. Sci Rep. 2019; 9: 2375. .

    • Crossref
    • Export Citation
  • 50

    Victoza. INN-liraglutide. [Victoza – Alkalmazási előírás.] EMA https://ec.europa.eu/health/documents/community-register/2017/20170725138543/anx_138543_hu.pdf [Hungarian]

  • 51

    Ozempic. INN-semaglutide. EMA [Ozempic – Alkalmazási előírás.] https://ec.europa.eu/health/documents/community-register/2018/20180208139833/anx_139833_hu.pdf [Hungarian]

  • 52

    Xultophy. IDegLira. [Xultophy – Alkalmazási előírás.] EMA https://ec.europa.eu/health/documents/community-register/2014/20140918129550/anx_129550_hu.pdf [Hungarian]

  • 53

    van Can J, Sloth B, Jensen CB, et al. Effects of once-daily liraglutide on gastric emptying, glycemic parameters, appetite and energy metabolism in obese non-diabetic adults. Int J Obes. 2014; 38: 784–793.

  • 54

    Arapovicsné Kiss K, Borbáth L, Hajós P, et al. Unexpected adverse event of a long-acting GLP-1 receptor agonist – decreased gastrointestinal motility causing clinical symptoms during IDegLira therapy. A case report. [Hosszú hatású GLP-1 receptor agonista szokatlan mellékhatása – a gastrointestinalis motilitás klinikai panaszokat okozó csökkenése IDegLira kezelés során. Esetismertetés.] Diabetol Hung. In press [Hungarian]

  • 55

    Kitamura T, Otsuki M, Kubo N, et al. Two cases of paralytic ileus associated with the administration of liraglutide. J Japan Diabetes Soc. 2012; 55: 982–986.