View More View Less
  • 1 Semmelweis Egyetem, Orvostudományi Kar, Budapest, Kútvölgyi út 4., 1125

Absztrakt:

A közlemény az orozomukoid és ezen belül a sziálsav molekuláris szerkezetét, strukturális sajátosságát mutatja be, valamint ismerteti élettani, kórélettani és klinikai tulajdonságait, illetve szerepét. Az orozomukoid a lipokalinok családjába, illetve az immunokalinok családjába tartozó, az immunrendszerre ható antiinflammatoricus, valamint transzportmolekula. Az orozomukoid további sajátossága, hogy lektinekhez tud kapcsolódni. Az orozomukoid elterjedt a természetben, és további vizsgálata révén a funkciójával, biológiai szerepével kapcsolatos ismeretek is gazdagodni fognak. A cikkben a klinikai vonatkozások is említést nyernek. Orv Hetil. 2019; 160(8): 283–290.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Crispe IN. The liver as a lymphoid organ. Annu Rev Immunol. 2009; 27: 147–163.

  • 2

    Wick G, Grundtman C, Mayerl C, et al. The immunology of fibrosis. Annu Rev Immunol. 2013; 31: 107–135.

  • 3

    Crespo HJ, Lau, JT, Videira PA. Dendritic cells: a spot on sialic acid. Front Immunol. 2013; 4: 491.

  • 4

    Crocker PR. Siglecs in innate immunity. Curr Opin Pharmacol. 2005; 5: 431–437.

  • 5

    Crocker PR, Varki A. Siglecs, sialic acids and innate immunity. Trends Immunol. 2001, 22: 337–342.

  • 6

    Bode JG, Albrecht U, Häussinger D, et al. Hepatic acute phase proteins – Regulation by IL-6- and IL-1-type cytokines involving STAT3 and its crosstalk with NF-κB-dependent signaling. Eur J Cell Biol. 2012; 91: 496–505.

  • 7

    Thomas S, Wolf SE, Chinkes DL, et al. Recovery from the hepatic acute phase response in the severely burned and the effects of long-term growth hormone treatment. BURNS 2004; 30: 675–679.

  • 8

    Quinton LJ, Jones MR, Robson BE, et al. Mechanisms of the hepatic acute-phase response during bacterial pneumonia. Infect Immun. 2009; 77: 2417–2426.

  • 9

    Fournier T, Medjoubi NN, Porquet D. Alpha-1-acid glycoprotein. Biochem Biophys Acta 2000; 1482: 157–171.

  • 10

    Fernandes CL, Ligabue-Braun R, Verli H. Structural glycobiology of human α1-acid glycoprotein and its implications for pharmacokinetics and inflammation. Glycobiology 2015; 25: 1125–1133.

  • 11

    Linnartz B, Neumann H. Microglial activatory (immunoreceptor tyrosine-based activation motif)- and inhibitory (immunoreceptor tyrosine-based inhibition motif)-signaling receptors for recognition of the neuronal glycocalyx. Glia 2013; 61: 37–46.

  • 12

    Gomez IG, Tang J, Wilson C, et al. Metalloproteinase-mediated shedding of integrin β2 promotes macrophage efflux from inflammatory sites. J Biol Chem. 2012; 287: 4581–4589.

  • 13

    Moshage H. Cytokines and the hepatic acute phase response. J Pathol. 1997; 181: 257–266.

  • 14

    Gunnarsson P, Levander L, Påhlsson P, et al. The acute-phase protein α1-acid glycoprotein (AGP) induces rises in cytosolic Ca2+ in neutrophil granulocytes via sialic acid binding immunoglobulin-like lectins (Siglecs). FASEB J. 2008; 21: 4059–4069.

  • 15

    Grewal PK, Uchiyama S, Ditto D, et al. The Ashwell receptor mitigates the lethal coagulopathy of sepsis. Nat Med. 2008; 14: 648–655.

  • 16

    Buzás EI, György B, Pásztói M, et al. Carbohydrate recognition systems in autoimmunity. Autoimmunity 2006; 39: 691–704.

  • 17

    Jakab L. Acute phase reaction of the body. [A szervezeti „acut phasis reactio”.] Orv Hetil. 1993; 134: 563–568. [Hungarian]

  • 18

    Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med. 1999; 340: 448–454.

  • 19

    Arnold JN, Wormald MR, Sim RB, et al. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol. 2007; 25: 21–50.

  • 20

    Jakab L, Kalabay L. The acute phase reaction syndrome: the acute phase reactants. Acta Microbiol Immunol Hung. 1998; 45: 409–418.

  • 21

    Ceciliani F, Pocacqua V. The acute phase protein α1-acid glycoprotein: a model for altered glycosylation during diseases. Curr Protein Pept Sci. 2007; 8: 91–108.

  • 22

    Lehmann F, Tiralongo E, Tiralongo J. Sialic acid-specific lectins: occurrence, specificity and function. Cell Mol Life Sci. 2006; 63: 1331–1354.

  • 23

    Kopecký V Jr, Ettrich R, Hofbauerová K, et al. Structure of human α1-acid glycoprotein and its high-affinity binding site. Biochem Biophys Res Commun. 2003; 300: 41–46.

  • 24

    Varki A, Angata T. Siglecs – the major subfamily of I-type lectins. Glycobiology 2006; 16: 1R–27R.

  • 25

    Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med. 1999; 340: 448–454.

  • 26

    Huang RY, Hudgens JW. Effects of desialylation on human α1-acid glycoprotein-ligand interactions. Biochemistry 2013; 52: 7127–7136.

  • 27

    Schönfeld DL, Ravelli RB, Mueller U, et al. The 1.8-A crystal structure of alpha1-acid glycoprotein (orosomucoid) solved by UV RIP reveals the broad drug-binding activity of this human plasma lipocalin. J Mol Biol. 2008; 384: 393–405.

  • 28

    Watanabe K, Ishima Y, Akaike T, et al. S-nitrosated α-1-acid glycoprotein kills drug-resistant bacteria and aids survival in sepsis. FASEB J. 2013; 27: 391–398.

  • 29

    Gieseke F, Böhringer J, Bussolari R, et al. Human multipotent mesenchymal stromal cells use galectin-1 to inhibit immune effector cells. Blood 2010; 116: 3770–3779.

  • 30

    Rayes J, Roumenina LT, Dimitrov JD, et al. The interaction between factor H and VWF increases factor H cofactor activity and regulates VWF prothrombotic status. Blood 2014; 123: 121–125.

  • 31

    Jorgensen JM, Yang Z, Lönnerdal B, et al. Plasma ferritin and hepcidin are lower at 4 months postpartum among women with elevated C-reactive protein or α1-acid glycoprotein. J Nutr. 2017; 147: 1194–1199.

  • 32

    Tsuboi A, Minato S, Yano M, et al. Association of serum orosomucoid with 30-min plasma glucose and glucose excursion during oral glucose tolerance tests in non-obese young Japanese women. BMJ Open Diabetes Res Care 2018; 6: e000508.

  • 33

    Reiding KR, Vreeker GC, Bondt A, et al. Serum protein N-glycosylation changes with rheumatoid arthritis disease activity during and after pregnancy. Front Med. 2018; 4: 241.

  • 34

    Singh-Manoux A, Shipley MJ, Bell JA, et al. Association between inflammatory biomarkers and all-cause, cardiovascular and cancer-related mortality. CMAJ 2017; 189: E384–E390.

  • 35

    Muhammad IF, Borné Y, Östling G, et al. Acute phase proteins as prospective risk markers for arterial stiffness: The Malmö Diet and Cancer cohort. PLOS One 2017; 12: e0181718.

  • 36

    Kustán P, Horváth-Szalai Z, Mühl D. Nonconventional markers of sepsis. EJIFCC 2017; 28: 122–133.

  • 37

    Zhao Q, Zhan T, Deng Z, et al. Glycan analysis of colorectal cancer samples reveals stage-dependent changes in CEA glycosylation patterns. Clin Proteomics 2018; 15: 9.

  • 38

    Narita T, Hatakeyama S, Yoneyama T, et al. Clinical implications of serum N-glycan profiling as a diagnostic and prognostic biomarker in germ-cell tumors. Cancer Med. 2017; 6: 739–748.

  • 39

    Kostner KM, Kostner GM. Lipoprotein (a): a historical appraisal. J Lipid Res. 2017; 58: 1–14.

  • 40

    Bao X, Borné Y, Johnson L, et al. Comparing the inflammatory profiles for incidence of diabetes mellitus and cardiovascular diseases: a prospective study exploring the ‘common soil’ hypothesis. Cardiovasc Diabetol. 2018; 17: 87.

  • 41

    Varki, A. Biological roles of glycans. Glycobiology 2017; 27: 3–49.

  • 42

    Jakab L. Glycosaminoglycans, proteoglycans, atherosclerosis. [Glikozaminoglikánok, proteoglikánok, atherosclerosis.] Orv Hetil. 2004; 145: 795–803. [Hungarian]

  • 43

    Clark SJ, Ridge LA, Herbert AP, et al. Tissue-specific host recognition by complement factor H is mediated by differential activities of its glycosaminoglycan-binding regions. J Immunol. 2013; 190: 2049–2057.

  • 44

    Baldan-Martin M, de la Cuesta F, Alvarez-Llamas G, et al. Prediction of development and maintenance of high albuminuria during chronic renin-angiotensin suppression by plasma proteomics. Int J Cardiol. 2015; 196: 170–177.

  • 45

    Stevens J, Blixt O, Tumpey TM, et al. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 2006; 312: 404–410.

  • 46

    Yuki, N. Carbohydrate mimicry: a new paradigm of autoimmune diseases. Curr Opin Immunol. 2005; 17: 577–582.

  • 47

    Varki A. Trousseau’s syndrome: multiple definitions and multiple mechanisms. Blood 2007; 110: 1723–1729.

  • 48

    Rademacher C, Bru T, McBride R, et al. A Siglec-like sialic-acid-binding motif revealed in an adenovirus capsid protein. Glycobiology 2012; 22: 1086–1091.

  • 49

    Crocker PR, Paulson JC, Varki A. Siglecs and their roles in the immune system. Nat Rev Immunol. 2007; 7: 255–266.

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2020 0 7 3
Nov 2020 0 39 16
Dec 2020 0 2 2
Jan 2021 0 12 11
Feb 2021 0 8 10
Mar 2021 0 9 17
Apr 2021 0 2 2