View More View Less
  • 1 Semmelweis Egyetem, Általános Orvostudományi Kar, Budapest, Üllői út 78., 1082
  • 2 Debreceni Egyetem, Általános Orvostudományi Kar, Debrecen
  • 3 Petz Aladár Megyei Oktató Kórház, Győr
  • 4 Pécsi Tudományegyetem, Általános Orvostudományi Kar, Pécs
  • 5 Borsod-Abaúj-Zemplén Megyei Központi Kórház, Miskolc
  • 6 Dél-pesti Centrumkórház, Budapest
  • 7 Pécsi Tudományegyetem, Általános Orvostudományi Kar, Pécs
  • 8 Uzsoki Utcai Kórház, Budapest
  • 9 Jász-Nagykun-Szolnok Megyei Hetényi Géza Kórház, Szolnok
  • 10 Debreceni Egyetem, Általános Orvostudományi Kar, Debrecen
  • 11 Semmelweis Egyetem, Általános Orvostudományi Kar, Budapest
  • 12 Markusovszky Egyetemi Oktatókórház, Szombathely
  • 13 Semmelweis Egyetem, Általános Orvostudományi Kar, Budapest
  • 14 Semmelweis Egyetem, Általános Orvostudományi Kar, Budapest
  • 15 Semmelweis Egyetem, Általános Orvostudományi Kar, Budapest
  • 16 Országos Onkológiai Intézet, Budapest
  • 17 Bács-Kiskun-Szolnok Megyei Kórház, Kecskemét
  • 18 Pécsi Tudományegyetem, Általános Orvostudományi Kar, Pécs
  • 19 Somogy Megyei Kaposi Mór Oktató Kórház, Kaposvár
  • 20 Uzsoki Utcai Kórház, Budapest
  • 21 Markusovszky Egyetemi Oktatókórház, Általános, Szombathely
  • 22 Pécsi Tudományegyetem, Általános Orvostudományi Kar, Pécs
  • 23 Országos Onkológiai Intézet, Budapest
  • 24 Szabolcs-Szatmár-Bereg Megyei Jósa András Oktatókórház, Nyíregyháza
  • 25 Csolnoky Ferenc Kórház, Veszprém
  • 26 Petz Aladár Megyei Oktató Kórház, Győr
  • 27 Szent Borbála Kórház, Tatabánya
  • 28 Szegedi Tudományegyetem, Általános Orvostudományi Kar, Szeged
  • 29 Magyar Honvédség Egészségügyi Központ, Budapest
  • 30 Szegedi Tudományegyetem, Általános Orvostudományi Kar, Szeged
  • 31 Borsod-Abaúj-Zemplén Megyei Központi Kórház, Miskolc
  • 32 Somogy Megyei Kaposi Mór Oktató Kórház, Kaposvár
  • 33 Országos Onkológiai Intézet, Budapest
  • 34 Bács-Kiskun Megyei Kórház, Kecskemét
  • 35 Petz Aladár Megyei Oktató Kórház, Győr
  • 36 Semmelweis Egyetem, Általános Orvostudományi Kar, Budapest
  • 37 Szegedi Tudományegyetem, Általános Orvostudományi Kar, Szeged
  • 38 Szabolcs-Szatmár-Bereg Megyei Jósa András Oktatókórház, Nyíregyháza
  • 39 Semmelweis Egyetem, Általános Orvostudományi Kar, Budapest
  • 40 Országos Onkológiai Intézet, Budapest
Open access

If the inline PDF is not rendering correctly, you can download the PDF file here.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Lesurtel M, Perrier A, Bossuyt PM, et al. An independent jury-based consensus conference model for the development of recommendations in medico-surgical practice. Surgery 2014; 155: 390–397.

  • 2

    Desolneux G, Isambert M, Mathoulin-Pelissier S, et al. Contrast-enhanced intra-operative ultrasound as a clinical decision making tool during surgery for colorectal liver metastases: the ULIIS study. Eur J Surg Oncol. 2019: 1212–1218.

  • 3

    Floriani I, Torri V, Rulli E, et al. Performance of imaging modalities in diagnosis of liver metastases from colorectal cancer: a systematic review and meta analysis. J Magn Reson Imaging 2010; 31: 19–31.

  • 4

    Moulton C-A, Gu C-S, Law CH, et al. Effect of PET before liver resection on surgical management for colorectal adenocarcinoma metastases: a randomized clinical trial. JAMA 2014; 311: 1863–1869.

  • 5

    Jones O, Rees M, John T, et al. Biopsy of resectable colorectal liver metastases causes tumour dissemination and adversely affects survival after liver resection. Br J Surg. 2005; 92: 1165–1168.

  • 6

    Suo L, Chang R, Padmanabhan V, et al. For diagnosis of liver masses, fine-needle aspiration versus needle core biopsy: which is better? Am J Clin Pathol. 2018; 7: 46–49.

  • 7

    Kim JS, Won HJ, Lee SJ, et al. Utility and safety of repeated ultrasound-guided core needle biopsy of focal liver masses. J Ultrasound Med. 2018; 37: 447–452.

  • 8

    Kaur H, Hindman NM, Al-Refaie WB, et al. ACR Appropriateness Criteria® suspected liver metastases. J Am Coll Radiol. 2017; 14: S314–S325.

  • 9

    George A, Manghat N, Hamilton M. Comparison between a fixed-dose contrast protocol and a weight-based contrast dosing protocol in abdominal CT. Clin Radiol. 2016; 71: 1314. e1–1314.e9.

  • 10

    Beckers RC, Lambregts DM, Lahaye MJ, et al. Advanced imaging to predict response to chemotherapy in colorectal liver metastases – a systematic review. HPB (Oxford) 2018; 20: 120–127.

  • 11

    Kekelidze M, D’Errico L, Pansini M, et al. Colorectal cancer: current imaging methods and future perspectives for the diagnosis, staging and therapeutic response evaluation. World J Gastroenterol. 2013; 19: 8502–8514.

  • 12

    Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009; 45: 228–247.

  • 13

    Oba A, Mise Y, Ito H, et al. Clinical implications of disappearing colorectal liver metastases have changed in the era of hepatocyte-specific MRI and contrast-enhanced intraoperative ultrasonography. HPB (Oxford) 2018; 20: 708–714.

  • 14

    Tsilimigras DI, Ntanasis-Stathopoulos I, Paredes AZ, et al. Disappearing liver metastases: a systematic review of the current evidence. Surg Oncol. 2019; 29: 7–13.

  • 15

    Ferrero A, Langella S, Russolillo N, et al. Intraoperative detection of disappearing colorectal liver metastases as a predictor of residual disease. J Gastrointest Surg. 2012; 16: 806–814.

  • 16

    Bandar A, Hussain M, Kim NK. Current status and future perspectives on treatment of liver metastasis in colorectal cancer. Oncol Rep. 2017; 37: 2553–2564.

  • 17

    Sadot E, Koerkamp BG, Leal JN, et al. Resection margin and survival in 2368 patients undergoing hepatic resection for metastatic colorectal cancer: surgical technique or biologic surrogate? Ann Surg. 2015; 262: 476–485.

  • 18

    House MG, Ito H, Gönen M, et al. Survival after hepatic resection for metastatic colorectal cancer: trends in outcomes for 1,600 patients during two decades at a single institution. J Am Coll Surg. 2010; 210: 744–752.

  • 19

    Chakedis J, Schmidt CR. Surgical treatment of metastatic colorectal cancer. Surg Oncol Clin N Am. 2018; 27: 377–399.

  • 20

    Torzilli G, Procopio F, Botea F, et al. One-stage ultrasonographically guided hepatectomy for multiple bilobar colorectal metastases: a feasible and effective alternative to the 2-stage approach. Surgery 2009; 146: 60–71.

  • 21

    Meijerink MR, Puijk RS, van Tilborg AA, et al. Radiofrequency and microwave ablation compared to systemic chemotherapy and to partial hepatectomy in the treatment of colorectal liver metastases: a systematic review and meta-analysis. Cardiovasc Intervent Radiol. 2018; 41: 1189–1204.

  • 22

    Mizuno T, Cloyd JM, Omichi K, et al. Two-stage hepatectomy vs one-stage major hepatectomy with contralateral resection or ablation for advanced bilobar colorectal liver metastases. J Am Coll Surg. 2018; 226: 825–834.

  • 23

    Rassam F, Olthof PB, Bennink RJ, et al. Current modalities for the assessment of future remnant liver function. Visc Med. 2017; 33: 442–448.

  • 24

    D’Onofrio M, De Robertis R, Demozzi E, et al. Liver volumetry: is imaging reliable? Personal experience and review of the literature. World J Radiol. 2014; 6: 62–71.

  • 25

    Vauthey JN, Chaoui A, Do KA, et al. Standardized measurement of the future liver remnant prior to extended liver resection: methodology and clinical associations. Surgery 2000; 127: 512–519.

  • 26

    Shindoh J, Tzeng CW, Aloia TA, et al. Optimal future liver remnant in patients treated with extensive preoperative chemotherapy for colorectal liver metastases. Ann Surg Oncol. 2013; 20: 2493–2500.

  • 27

    Adams RB, Aloia TA, Loyer E, et al. Selection for hepatic resection of colorectal liver metastases: expert consensus statement. HPB (Oxford) 2013; 15: 91–103.

  • 28

    Kishi Y, Abdalla EK, Chun YS, et al. Three hundred and one consecutive extended right hepatectomies: evaluation of outcome based on systematic liver volumetry. Ann Surg. 2009; 250: 540–548.

  • 29

    De Graaf W, Van Lienden KP, Dinant S, et al. Assessment of future remnant liver function using hepatobiliary scintigraphy in patients undergoing major liver resection. J Gastrointest Surg. 2010; 14: 369–378.

  • 30

    Chapelle T, De Beeck BO, Huyghe I, et al. Future remnant liver function estimated by combining liver volumetry on magnetic resonance imaging with total liver function on 99mTc-mebrofenin hepatobiliary scintigraphy: can this tool predict post-hepatectomy liver failure? HPB (Oxford) 2016; 18: 494–503.

  • 31

    Schroeder RA, Marroquin CE, Bute BP, et al. Predictive indices of morbidity and mortality after liver resection. Ann Surg. 2006; 243: 373–379.

  • 32

    Margonis GA, Sergentanis TN, Ntanasis-Stathopoulos I, et al. Impact of surgical margin width on recurrence and overall survival following R0 hepatic resection of colorectal metastases: a systematic review and meta-analysis. Ann Surg. 2018; 267: 1047–1055.

  • 33

    Liu W, Sun Y, Zhang L, et al. Negative surgical margin improved long-term survival of colorectal cancer liver metastases after hepatic resection: a systematic review and meta-analysis. Int J Colorectal Dis. 2015; 30: 1365–1373.

  • 34

    Ardito F, Panettieri E, Vellone M, et al. The impact of R1 resection for colorectal liver metastases on local recurrence and overall survival in the era of modern chemotherapy: an analysis of 1,428 resection areas. Surgery 2019; 165: 712–720.

  • 35

    Viganò L, Procopio F, Cimino MM, et al. Is tumor detachment from vascular structures equivalent to R0 resection in surgery for colorectal liver metastases? An observational cohort. Ann Surg Oncol. 2016; 23: 1352–1360.

  • 36

    de Haas RJ, Wicherts DA, Flores E, et al. R1 resection by necessity for colorectal liver metastases: is it still a contraindication to surgery? Ann Surg. 2008; 248: 626–637.

  • 37

    Margonis GA, Spolverato G, Kim Y, et al. Intraoperative surgical margin re-resection for colorectal liver metastasis: is it worth the effort? J Gastrointest Surg. 2015; 19: 699–707.

  • 38

    Moris D, Ronnekleiv-Kelly S, Rahnemai-Azar AA, et al. Parenchymal-sparing versus anatomic liver resection for colorectal liver metastases: a systematic review. J Gastrointest Surg. 2017; 21: 1076–1085.

  • 39

    Luo L, Yu Z, Huang J, et al. Selecting patients for a second hepatectomy for colorectal metastases: an systemic review and meta-analysis. Eur J Surg Oncol. 2014; 40: 1036–1048.

  • 40

    Giglio MC, Giakoustidis A, Draz A, et al. Oncological outcomes of major liver resection following portal vein embolization: a systematic review and meta-analysis. Ann Surg Oncol. 2016; 23: 3709–3717.

  • 41

    Isfordink C, Samim M, Braat M, et al. Portal vein ligation versus portal vein embolization for induction of hypertrophy of the future liver remnant: a systematic review and meta-analysis. Surg Oncol. 2017; 26: 257–267.

  • 42

    De Graaf W, Van Lienden K, Van Den Esschert J, et al. Increase in future remnant liver function after preoperative portal vein embolization. Br J Surg. 2011; 98: 825–834.

  • 43

    Cieslak KP, Bennink RJ, de Graaf W, et al. Measurement of liver function using hepatobiliary scintigraphy improves risk assessment in patients undergoing major liver resection. HPB (Oxford) 2016; 18: 773–780.

  • 44

    Van Lienden K, Van Den Esschert J, De Graaf W, et al. Portal vein embolization before liver resection: a systematic review. Cardiovasc Intervent Radiol. 2013; 36: 25–34.

  • 45

    Pommier R, Ronot M, Cauchy F, et al. Colorectal liver metastases growth in the embolized and non-embolized liver after portal vein embolization: influence of initial response to induction chemotherapy. Ann Surg Oncol. 2014; 21: 3077–3083.

  • 46

    Spelt L, Sparrelid E, Isaksson B, et al. Tumour growth after portal vein embolization with pre-procedural chemotherapy for colorectal liver metastases. HPB (Oxford) 2015; 17: 529–535.

  • 47

    Fischer C, Melstrom LG, Arnaoutakis D, et al. Chemotherapy after portal vein embolization to protect against tumor growth during liver hypertrophy before hepatectomy. JAMA Surg. 2013; 148: 1103–1108.

  • 48

    Wicherts DA, de Haas RJ, Sebagh M, et al. Impact of bevacizumab on functional recovery and histology of the liver after resection of colorectal metastases. Br J Surg. 2011; 98: 399–407.

  • 49

    D’Angelica M, Kornprat P, Gonen M, et al. Lack of evidence for increased operative morbidity after hepatectomy with perioperative use of bevacizumab: a matched case-control study. Ann Surg Oncol. 2007; 14: 759–765.

  • 50

    Enne M, Schadde E, Björnsson B, et al. ALPPS as a salvage procedure after insufficient future liver remnant hypertrophy following portal vein occlusion. HPB (Oxford) 2017; 19: 1126–1129.

  • 51

    Sandström P, Røsok BI, Sparrelid E, et al. ALPPS improves resectability compared with conventional two-stage hepatectomy in patients with advanced colorectal liver metastasis: results from a Scandinavian multicenter randomized controlled trial (LIGRO trial). Ann Surg. 2018; 267: 833–840.

  • 52

    Linecker M, Stavrou GA, Oldhafer KJ, et al. The ALPPS risk score. Ann Surg. 2016; 264: 763–771.

  • 53

    Serenari M, Collaud C, Alvarez FA, et al. Interstage assessment of remnant liver function in ALPPS using hepatobiliary scintigraphy: prediction of posthepatectomy liver failure and introduction of the HIBA index. Ann Surg. 2018; 267: 1141–1147.

  • 54

    Oldhafer KJ, Stavrou GA, van Gulik TM. ALPPS – where do we stand, where do we go? Eight recommendations from the first international expert meeting. Ann Surg. 2016; 263: 839–841.

  • 55

    de Santibañes E, Alvarez FA, Ardiles V, et al. Inverting the ALPPS paradigm by minimizing first stage impact: the Mini-ALPPS technique. Langenbecks Arch Surg. 2016; 401: 557–563.

  • 56

    Machado MAC, Makdissi FF, Surjan RC. Totally laparoscopic ALPPS is feasible and may be worthwhile. Ann Surg. 2012; 256: e13.

  • 57

    Machado MA, Makdissi FF, Surjan RC, et al. Transition from open to laparoscopic ALPPS for patients with very small FLR: the initial experience. HPB (Oxford) 2017; 19: 59–66.

  • 58

    Linecker M, Kuemmerli C, Kambakamba P, et al. Performance validation of the ALPPS risk model. HPB (Oxford) 2019; 21: 711–721.

  • 59

    Schadde E, Raptis DA, Schnitzbauer AA, et al. Prediction of mortality after ALPPS Stage-1. Ann Surg. 2015; 262: 780–786.

  • 60

    Wakabayashi G, Cherqui D, Geller DA, et al. Recommendations for laparoscopic liver resection: a report from the second international consensus conference held in Morioka. Ann Surg. 2015; 261: 619–629.

  • 61

    Hilal MA, Aldrighetti L, Dagher I, et al. The Southampton consensus guidelines for laparoscopic liver surgery: from indication to implementation. Ann Surg. 2018; 268: 11–18.

  • 62

    Lupinacci R, Andraus W, Haddad LDP, et al. Simultaneous laparoscopic resection of primary colorectal cancer and associated liver metastases: a systematic review. Tech Coloproctol. 2014; 18: 129–135.

  • 63

    Shelat V, Serin K, Samim M, et al. Outcomes of repeat laparoscopic liver resection compared to the primary resection. World J Surg. 2014; 38: 3175–3180.

  • 64

    Fuks D, Nomi T, Ogiso S, et al. Laparoscopic two-stage hepatectomy for bilobar colorectal liver metastases. Br J Surg. 2015; 102: 1684–1690.

  • 65

    Ciria R, Cherqui D, Geller DA, et al. Comparative short-term benefits of laparoscopic liver resection: 9000 cases and climbing. Ann Surg. 2016; 263: 761–777.

  • 66

    Scuderi V, Barkhatov L, Montalti R, et al. Outcome after laparoscopic and open resections of posterosuperior segments of the liver. Br J Surg. 2017; 104: 751–759.

  • 67

    Vigano L, Laurent A, Tayar C, et al. The learning curve in laparoscopic liver resection: improved feasibility and reproducibility. Ann Surg. 2009; 250: 772–782.

  • 68

    Veit P, Antoch G, Stergar H, et al. Detection of residual tumor after radiofrequency ablation of liver metastasis with dual-modality PET/CT: initial results. Eur Radiol. 2006; 16: 80–87.

  • 69

    Liang P, Yu J, Lu M-D, et al. Practice guidelines for ultrasound-guided percutaneous microwave ablation for hepatic malignancy. World J Gastroenterol. 2013; 19: 5430–5438.

  • 70

    Crocetti L, De Baere T, Lencioni R. Quality improvement guidelines for radiofrequency ablation of liver tumours. Cardiovasc Intervent Radiol. 2010; 33: 11–17.

  • 71

    Stang A, Oldhafer KJ, Weilert H, et al. Selection criteria for radiofrequency ablation for colorectal liver metastases in the era of effective systemic therapy: a clinical score based proposal. BMC Cancer 2014; 14: 500.

  • 72

    Laursen T, Hagemann CA, Wei C, et al. Bariatric surgery in patients with non-alcoholic fatty liver disease – from pathophysiology to clinical effects. World J Hepatol. 2019; 11: 138–149.

  • 73

    Sasaki K, Margonis GA, Andreatos N, et al. Combined resection and RFA in colorectal liver metastases: stratification of long-term outcomes. J Surg Res. 2016; 206: 182–189.

  • 74

    Han Y, Yan D, Xu F, et al. Radiofrequency ablation versus liver resection for colorectal cancer liver metastasis: an updated systematic review and meta-analysis. Chin Med J. 2016; 129: 2983–2990.

  • 75

    Tsitskari M, Filippiadis D, Kostantos C, et al. The role of interventional oncology in the treatment of colorectal cancer liver metastases. Ann Gastroenterol. 2019; 32: 147–155.

  • 76

    Gillams A, Goldberg N, Ahmed M, et al. Thermal ablation of colorectal liver metastases: a position paper by an international panel of ablation experts, The Interventional Oncology Sans Frontières meeting 2013. Eur Radiol. 2015; 25: 3438–3454.

  • 77

    Wang X, Sofocleous CT, Erinjeri JP, et al. Margin size is an independent predictor of local tumor progression after ablation of colon cancer liver metastases. Cardiovasc Intervent Radiol. 2013; 36: 166–175.

  • 78

    Shady W, Petre EN, Do KG, et al. Percutaneous microwave versus radiofrequency ablation of colorectal liver metastases: ablation with clear margins (A0) provides the best local tumor control. J Vasc Interv Radiol. 2018; 29: 268–275.e1.

  • 79

    Kaye EA, Cornelis FH, Petre EN, et al. Volumetric 3D assessment of ablation zones after thermal ablation of colorectal liver metastases to improve prediction of local tumor progression. Eur Radiol. 2019; 29: 2698–2705.

  • 80

    Sainani NI, Gervais DA, Mueller PR, et al. Imaging after percutaneous radiofrequency ablation of hepatic tumors: Part 1, Normal findings. AJR Am J Roentgenol. 2013; 200: 184–193.

  • 81

    Dupré A, Jones RP, Diaz-Nieto R, et al. Curative-intent treatment of recurrent colorectal liver metastases: a comparison between ablation and resection. Eur J Surg Oncol. 2017; 43: 1901–1907.

  • 82

    Lencioni R, De Baere T, Martin RC, et al. Image-guided ablation of malignant liver tumors: recommendations for clinical validation of novel thermal and non-thermal technologies – a western perspective. Liver Cancer 2015; 4: 208–214.

  • 83

    Venkat SR, Mohan PP, Gandhi RT. Colorectal liver metastasis: overview of treatment paradigm highlighting the role of ablation. AJR Am J Roentgenol. 2018; 210: 883–890.

  • 84

    van Amerongen MJ, Jenniskens SF, van den Boezem PB, et al. Radiofrequency ablation compared to surgical resection for curative treatment of patients with colorectal liver metastases – a meta-analysis. HPB (Oxford) 2017; 19: 749–756.

  • 85

    Ravaioli M, Ercolani G, Neri F, et al. Liver transplantation for hepatic tumors: a systematic review. World J Gastroenterol. 2014; 20: 5345–5352.

  • 86

    Herrero A, Nadalin S, Panaro F. Liver transplantation for irresectable colorectal liver metastases: still a contraindication? Hepatobiliary Surg Nutr. 2018; 7: 475–478.

  • 87

    Hagness M, Foss A, Line P-D, et al. Liver transplantation for nonresectable liver metastases from colorectal cancer. Ann Surg. 2013; 257: 800–806.

  • 88

    Gorgen A, Muaddi H, Zhang W, et al. The new era of transplant oncology: liver transplantation for nonresectable colorectal cancer liver metastases. Can J Gastroenterol Hepatol. 2018; 2018: 9531925.

  • 89

    Line P-D, Hagness M, Berstad AE, et al. A novel concept for partial liver transplantation in nonresectable colorectal liver metastases: the RAPID concept. Ann Surg. 2015; 262: e5–e9.

  • 90

    Engstrand J, Nilsson H, Strömberg C, et al. Colorectal cancer liver metastases – a population-based study on incidence, management and survival. BMC Cancer 2018; 18: 78.

  • 91

    Makowiec F, Menzel M, Bronsert P, et al. Does the site of primary colorectal cancer influence the outcome after resection of isolated liver metastases? Dig Liver Dis. 2018; 50: 1088–1092.

  • 92

    Petrelli F, Coinu A, Zaniboni A, et al. Prognostic factors after R0 resection of colorectal cancer liver metastases: a systematic review and pooled-analysis. Rev Recent Clin Trials 2016; 11: 56–62.

  • 93

    Slesser AA, Chand M, Goldin R, et al. Outcomes of simultaneous resections for patients with synchronous colorectal liver metastases. Eur J Surg Oncol. 2013; 39: 1384–1393.

  • 94

    Reddy SK, Pawlik TM, Zorzi D, et al. Simultaneous resections of colorectal cancer and synchronous liver metastases: a multi-institutional analysis. Ann Surg Oncol. 2007; 14: 3481–3491.

  • 95

    Feng Q, Wei Y, Zhu D, et al. Timing of hepatectomy for resectable synchronous colorectal liver metastases: for whom simultaneous resection is more suitable – a meta-analysis. PLoS ONE 2014; 9: e104348.

  • 96

    Ihnát P, Vávra P, Zonča P. Treatment strategies for colorectal carcinoma with synchronous liver metastases: which way to go? World J Gastroenterol. 2015; 21: 7014–7021.

  • 97

    Karoui M, Penna C, Amin-Hashem M, et al. Influence of preoperative chemotherapy on the risk of major hepatectomy for colorectal liver metastases. Ann Surg. 2006; 243: 1–7.

  • 98

    Adam R, de Gramont A, Figueras J, et al. Managing synchronous liver metastases from colorectal cancer: a multidisciplinary international consensus. Cancer Treat Rev. 2015; 41: 729–741.

  • 99

    Mentha G, Majno P, Andres A, et al. Neoadjuvant chemotherapy and resection of advanced synchronous liver metastases before treatment of the colorectal primary. Br J Surg. 2006; 93: 872–878.

  • 100

    Nordlinger B, Vauthey J-N, Poston G, et al. The timing of chemotherapy and surgery for the treatment of colorectal liver metastases. Clin Colorectal Cancer 2010; 9: 212–218.

  • 101

    Basso M, Dadduzio V, Ardito F, et al. Conversion chemotherapy for technically unresectable colorectal liver metastases: a retrospective, STROBE-compliant, single-center study comparing chemotherapy alone and combination chemotherapy with cetuximab or bevacizumab. Medicine 2016; 95: e3722.

  • 102

    Takatsuki M, Tokunaga S, Uchida S, et al. Evaluation of resectability after neoadjuvant chemotherapy for primary non-resectable colorectal liver metastases: a multicenter study. Eur J Surg Oncol. 2016; 42: 184–189.

  • 103

    Brule S, Jonker D, Karapetis C, et al. Location of colon cancer (right-sided versus left-sided) as a prognostic factor and a predictor of benefit from cetuximab in NCIC CO.17. Eur J Cancer 2015; 51: 1405–1414.

  • 104

    Wang F, Bai L, Liu T-S, et al. Right- and left-sided colorectal cancers respond differently to cetuximab. Chin J Cancer 2015; 34: 24.

  • 105

    Overman MJ, McDermott R, Leach JL, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017; 18: 1182–1191.

  • 106

    Masi G, Loupakis F, Salvatore L, et al. Bevacizumab with FOLFOXIRI (irinotecan, oxaliplatin, fluorouracil, and folinate) as first-line treatment for metastatic colorectal cancer: a phase 2 trial. Lancet Oncol. 2010; 11: 845–852.

  • 107

    Ye LC, Liu TS, Ren L, et al. Randomized controlled trial of cetuximab plus chemotherapy for patients with KRAS wild-type unresectable colorectal liver-limited metastases. J Clin Oncol. 2013; 31: 1931–1938.

  • 108

    Stintzing S, Modest D, Fischer von Weikersthal L, et al. LBA11 Independent radiological (AIO KRK-0306) in the final RAS evaluable population. Ann Oncol. 2014; 25(Suppl 4) v1–v41. mdu438.9.

  • 109

    Nordlinger B, Van Cutsem E, Gruenberger T, et al. Combination of surgery and chemotherapy and the role of targeted agents in the treatment of patients with colorectal liver metastases: recommendations from an expert panel. Ann Oncol. 2009; 20: 985–992.

  • 110

    Mansmann UR, Laubender RP, Giessen CA, et al. Validating the prognostic relevance of initial change in tumor size using a series of therapeutic regimens for patients with metastatic colorectal cancer (mCRC). J Clin Oncol. 2012; 30: 580–580.

  • 111

    Haller DG, Rothenberg ML, Wong AO, et al. Oxaliplatin plus irinotecan compared with irinotecan alone as second-line treatment after single-agent fluoropyrimidine therapy for metastatic colorectal carcinoma. J Clin Oncol. 2008; 26: 4544–4550.

  • 112

    Koopman M, Antonini NF, Douma J, et al. Sequential versus combination chemotherapy with capecitabine, irinotecan, and oxaliplatin in advanced colorectal cancer (CAIRO): a phase III randomised controlled trial. Lancet 2007; 370: 135–142.

  • 113

    Rougier P, Van Cutsem E, Bajetta E, et al. Randomised trial of irinotecan versus fluorouracil by continuous infusion after fluorouracil failure in patients with metastatic colorectal cancer. Lancet 1998; 352: 1407–1412.

  • 114

    Fong Y, Fortner J, Sun RL, et al. Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: analysis of 1001 consecutive cases. Ann Surg. 1999; 230: 309–318.

  • 115

    Nordlinger B, Sorbye H, Glimelius B, et al. Perioperative chemotherapy with FOLFOX4 and surgery versus surgery alone for resectable liver metastases from colorectal cancer (EORTC Intergroup trial 40983): a randomised controlled trial. Lancet 2008; 371: 1007–1016.

  • 116

    Nordlinger B, Sorbye H, Glimelius B, et al. Perioperative FOLFOX4 chemotherapy and surgery versus surgery alone for resectable liver metastases from colorectal cancer (EORTC 40983): long-term results of a randomised, controlled, phase 3 trial. Lancet Oncol. 2013; 14: 1208–1215.

  • 117

    Adam R, Delvart V, Pascal G, et al. Rescue surgery for unresectable colorectal liver metastases downstaged by chemotherapy: a model to predict long-term survival. Ann Surg. 2004; 240: 644–658.

  • 118

    Gruenberger B, Tamandl D, Schueller J, et al. Bevacizumab, capecitabine, and oxaliplatin as neoadjuvant therapy for patients with potentially curable metastatic colorectal cancer. J Clin Oncol. 2008; 26: 1830–1835.

  • 119

    de Gramont Ad, Figer A, Seymour M, et al. Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol. 2000; 18: 2938–2947.

  • 120

    Ranpura V, Hapani S, Wu S. Treatment-related mortality with bevacizumab in cancer patients: a meta-analysis. JAMA 2011; 305: 487–494.

  • 121

    Robinson SM, Wilson CH, Burt AD, et al. Chemotherapy-associated liver injury in patients with colorectal liver metastases: a systematic review and meta-analysis. Ann Surg Oncol. 2012; 19: 4287–4299.

  • 122

    Kishi Y, Zorzi D, Contreras CM, et al. Extended preoperative chemotherapy does not improve pathologic response and increases postoperative liver insufficiency after hepatic resection for colorectal liver metastases. Ann Surg Oncol. 2010; 17: 2870–2876.

  • 123

    Welsh F, Tilney H, Tekkis P, et al. Safe liver resection following chemotherapy for colorectal metastases is a matter of timing. Br J Cancer 2007; 96: 1037–1042.

  • 124

    Ward J, Guthrie JA, Sheridan MB, et al. Sinusoidal obstructive syndrome diagnosed with superparamagnetic iron oxide – Enhanced magnetic resonance imaging in patients with chemotherapy – Treated colorectal liver metastases. J Clin Oncol. 2008; 26: 4304–4310.

  • 125

    Passot G, Soubrane O, Giuliante F, et al. Recent advances in chemotherapy and surgery for colorectal liver metastases. Liver Cancer 2017; 6: 72–79.

  • 126

    Van Cutsem E, Cervantes A, Adam R, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol. 2016; 27: 1386–1422.

  • 127

    Cremolini C, Loupakis F, Antoniotti C, et al. FOLFOXIRI plus bevacizumab versus FOLFIRI plus bevacizumab as first-line treatment of patients with metastatic colorectal cancer: updated overall survival and molecular subgroup analyses of the open-label, phase 3 TRIBE study. Lancet Oncol. 2015; 16: 1306–1315.

  • 128

    Loupakis F, Cremolini C, Masi G, et al. Initial therapy with FOLFOXIRI and bevacizumab for metastatic colorectal cancer. N Engl J Med. 2014; 371: 1609–1618.

  • 129

    Adam R, Pascal G, Castaing D, et al. Tumor progression while on chemotherapy: a contraindication to liver resection for multiple colorectal metastases? Ann Surg. 2004; 240: 1052.

  • 130

    Viganò L, Capussotti L, Barroso E, et al. Progression while receiving preoperative chemotherapy should not be an absolute contraindication to liver resection for colorectal metastases. Ann Surg Oncol. 2012; 19: 2786–2796.

  • 131

    Benoist S, Brouquet A, Penna C, et al. Complete response of colorectal liver metastases after chemotherapy: does it mean cure? J Clin Oncol. 2006; 24: 3939–3945.

  • 132

    Van Vledder MG, De Jong MC, Pawlik TM, et al. Disappearing colorectal liver metastases after chemotherapy: should we be concerned? J Gastrointest Surg. 2010; 14: 1691–1700.

  • 133

    Auer RC, White RR, Kemeny NE, et al. Predictors of a true complete response among disappearing liver metastases from colorectal cancer after chemotherapy. Cancer 2010; 116: 1502–1509.

  • 134

    Passot G, Odisio BC, Zorzi D, et al. Eradication of missing liver metastases after fiducial placement. J Gastrointest Surg. 2016; 20: 1173–1178.

  • 135

    Zalinski S, Abdalla EK, Mahvash A, et al. A marking technique for intraoperative localization of small liver metastases before systemic chemotherapy. Ann Surg Oncol. 2009; 16: 1208–1211.

  • 136

    Sobrero A, Damiani A. Maintenance therapy in advanced colorectal cancer, yes or no? Ask the laboratory. Ann Oncol. 2017; 28: 2043–2044.

  • 137

    Koopman M, Simkens LH, Ten Tije AJ, et al. Maintenance treatment with capecitabine and bevacizumab versus observation after induction treatment with chemotherapy and bevacizumab in metastatic colorectal cancer (mCRC): the phase III CAIRO3 study of the Dutch Colorectal Cancer Group (DCCG). Lancet 2015; 385: 1843–1852.

  • 138

    Zhou M, Fu L, Zhang J. Who will benefit more from maintenance therapy of metastatic colorectal cancer? Oncotarget 2018; 9: 12479–12486.

  • 139

    Hadden WJ, de Reuver PR, Brown K, et al. Resection of colorectal liver metastases and extra-hepatic disease: a systematic review and proportional meta-analysis of survival outcomes. HPB (Oxford) 2016; 18: 209–220.

  • 140

    Headrick JR, Miller DL, Nagorney DM, et al. Surgical treatment of hepatic and pulmonary metastases from colon cancer. Ann Thorac Surg. 2001; 71: 975–980.

  • 141

    Hammound MA, McCutcheon IE, Elsouki R, et al. Colorectal carcinoma and brain metastasis: distribution, treatment, and survival. Ann Surg Oncol. 1996; 3: 453–463.

  • 142

    Glehen O, Gilly FN, Boutitie F, et al. Toward curative treatment of peritoneal carcinomatosis from nonovarian origin by cytoreductive surgery combined with perioperative intraperitoneal chemotherapy: a multi-institutional study of 1290 patients. Cancer 2010; 116: 5608–5618.

  • 143

    Hong YS, Nam BH, Kim KP, et al. Oxaliplatin, fluorouracil, and leucovorin versus fluorouracil and leucovorin as adjuvant chemotherapy for locally advanced rectal cancer after preoperative chemoradiotherapy (ADORE): an open-label, multicentre, phase 2, randomised controlled trial. Lancet Oncol. 2014; 15: 1245–1253.

  • 144

    André T, Boni C, Navarro M, et al. Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. J Clin Oncol. 2009; 27: 3109–3116.

  • 145

    Quah HM, Chou JF, Gonen M, et al. Identification of patients with high-risk stage II colon cancer for adjuvant therapy. Dis Colon Rectum 2008; 51: 503–507.

  • 146

    Modest DP, Ricard I, Heinemann V, et al. Outcome according to KRAS-, NRAS- and BRAF-mutation as well as KRAS mutation variants: pooled analysis of five randomized trials in metastatic colorectal cancer by the AIO colorectal cancer study group. Ann Oncol. 2016; 27: 1746–1753.

  • 147

    National Comprehensive Cancer Network. Hepatobiliary Cancers (Version 2.2019). March 6, 2019. Available from: https://www.nccn.org/professionals/physician_gls/pdf/hepatobiliary.pdf [accessed: July 12, 2019].

  • 148

    Primrose JN, Perera R, Gray A, et al. Effect of 3 to 5 years of scheduled CEA and CT follow-up to detect recurrence of colorectal cancer: the FACS randomized clinical trial. JAMA 2014; 311: 263–270.

  • 149

    Thirunavukarasu P, Talati C, Munjal S, et al. Effect of incorporation of pretreatment serum carcinoembryonic antigen levels into AJCC staging for colon cancer on 5-year survival. JAMA Surg. 2015; 150: 747–755.

  • 150

    Park IJ, Choi G-S, Lim KH, et al. Serum carcinoembryonic antigen monitoring after curative resection for colorectal cancer: clinical significance of the preoperative level. Ann Surg Oncol. 2009; 16: 3087–3093.

  • 151

    Sepulveda AR, Hamilton SR, Allegra CJ, et al. Molecular biomarkers for the evaluation of colorectal cancer: guideline from the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and American Society of Clinical Oncology. Am J Clin Pathol. 2017; 147: 221–260.

  • 152

    Jehn C, Böning L, Kröning H, et al. Cetuximab-based therapy in elderly comorbid patients with metastatic colorectal cancer. Br J Cancer 2012; 106: 274–278.

  • 153

    Seymour MT, Thompson LC, Wasan HS, et al. Chemotherapy options in elderly and frail patients with metastatic colorectal cancer (MRC FOCUS2): an open-label, randomised factorial trial. Lancet 2011; 377: 1749–1759.

  • 154

    Hurwitz HI, Tebbutt NC, Kabbinavar F, et al. Efficacy and safety of bevacizumab in metastatic colorectal cancer: pooled analysis from seven randomized controlled trials. Oncologist 2013; 18: 1004–1012.

  • 155

    Tejpar S, Stintzing S, Ciardiello F, et al. Prognostic and predictive relevance of primary tumor location in patients with RAS wild-type metastatic colorectal cancer: retrospective analyses of the CRYSTAL and FIRE-3 trials. JAMA Oncol. 2017; 3: 194–201.

  • 156

    Stang A, Donati M, Weilert H, et al. Impact of systemic therapy and recurrence pattern on survival outcome after radiofrequency ablation for colorectal liver metastases. J Cancer 2016; 7: 1939–1949.

  • 157

    Vogl TJ, Farshid P, Naguib NN, et al. Thermal ablation of liver metastases from colorectal cancer: radiofrequency, microwave and laser ablation therapies. Radiol Med. 2014; 119: 451–461.

  • 158

    Zacharias AJ, Jayakrishnan TT, Rajeev R, et al. Comparative effectiveness of hepatic artery based therapies for unresectable colorectal liver metastases: a meta-analysis. PLoS ONE 2015; 10: e0139940.

  • 159

    Vogl TJ, Lahrsow M, Albrecht MH, et al. Survival of patients with non-resectable, chemotherapy-resistant colorectal cancer liver metastases undergoing conventional lipiodol-based transarterial chemoembolization (cTACE) palliatively versus neoadjuvantly prior to percutaneous thermal ablation. Eur J Radiol. 2018; 102: 138–145.

  • 160

    Scorsetti M, Comito T, Tozzi A, et al. Final results of a phase II trial for stereotactic body radiation therapy for patients with inoperable liver metastases from colorectal cancer. J Cancer Res Clin Oncol. 2015; 141: 543–553.

  • 161

    Martinez-Monge R, Nag S, Nieroda CA, et al. Iodine-125 brachytherapy in the treatment of colorectal adenocarcinoma metastatic to the liver. Cancer 1999; 85: 1218–1225.