View More View Less
  • 1 Semmelweis Egyetem, Budapest, Ferenc tér 15., 1094
  • 2 E-Group ICT Software Zrt., Budapest
Open access

Absztrakt:

Az egy betegség – egy célpont – egy gyógyszer paradigma az 1960-as évektől egészen a 2000-es évekig a gyógyszerkutatás meghatározó koncepciója volt. A gyógyszer-innováció eredményességének megtorpanása, sőt visszaesése, az egy támadáspontú megközelítés különösen multifaktoriális betegségek terápiájára való alkalmazhatóságának elvi korlátai azonban ráirányították a figyelmet az egy betegség – több célpont – egy gyógyszer több támadáspontú gyógyszer koncepciójára. Áttekintő közleményünkben a több támadáspontú gyógyszerek régi és új molekulatervezési stratégiáit és azok gyakorlati megvalósítását ismertetjük saját és mások példáin keresztül, melyek a több támadáspontú megközelítés különleges terápiás és diagnosztikai értékeit és előnyeit is illusztrálják. Végül rámutatunk arra, hogy a több támadáspontú koncepció új lehetőségeket is nyújtó teljes potenciálja rendszerszemléletű megközelítéssel, célszerűen kvantitatív rendszerfarmakológiával és adatelemzési, adatasszociációs (például mesterséges intelligenciát alkalmazó) módszerekkel bontakozhat ki. A rendszerfarmakológiai gyógyszer koncepciója új áttörést jelentő hatóanyagokhoz, kombinációs készítményekhez és gyógyszer-repozíciós készítményekhez is vezethet. Orv Hetil. 2020; 161(14): 523–531.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Mullard A. 2018 FDA drug approvals. Nat Rev Drug Discov. 2019; 18: 85–89.

  • 2

    DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ. 2016; 47: 20–33.

  • 3

    Wong CH, Siah KW, Lo AW. Estimation of clinical trial success rates and related parameters. Biostatistics 2019; 20: 273–286. [Correction: Biostatistics 2019; 20: 366.]

  • 4

    Beadeker M, Ringel M, Schulze U. 2018 FDA approvals hit all time high – but average value slips again. Nat Rev Drug Discov. 2019; 18: 90.

  • 5

    Mignani S, Huber S, Tomás H, et al. Why and how have drug discovery strategies in pharma changed? What are the new mindsets? Drug Discov Today 2016; 21: 239–249.

  • 6

    Scannell JW, Bosley J. When quality beats quantity: decision theory, drug discovery, and the reproducibility crisis. PLoS ONE 2016; 11: e0147215.

  • 7

    Lin HH, Zhang LL, Yan R, et al. Analysis of drug-target interactions: a study on FDA-approved new molecular entities between 2000 to 2015. Sci Rep. 2017; 7: 12230.

  • 8

    Ramsay RR, Popovic-Nikolic MR, Nikolic K, et al. A perspective on multi-target drug discovery and design for complex diseases. Clin Transl Med. 2018; 7: 3.

  • 9

    Baldwin JJ, Lumma WC Jr, Lundell GF, et al. Symbiotic approach to drug design: antihypertensive beta-adrenergic blocking agents. J Med Chem. 1979; 22: 1284–1290.

  • 10

    Clifton JE, Collins I, Hallett P, et al. Arylethanolamines derived from salicylamide with alpha- and beta-adrenoceptor blocking activities. Preparation of labetalol, its enantiomers, and related salicylamides. J Med Chem. 1982; 25: 670–679.

  • 11

    Wong DT, Robertson DW, Bymaster FP, et al. LY227942, an inhibitor of serotonin and norepinephrine uptake: biochemical pharmacology of a potential antidepressant drug. Life Sci. 1988; 43: 2049–2057.

  • 12

    Nelson MH, Dolder CR. Lapatinib: a novel dual tyrosine kinase inhibitor with activity in solid tumors. Ann Pharmacother. 2006; 40: 261–269.

  • 13

    Kiss B, Horváth A, Némethy Zs, et al. Cariprazine (RGH-188), a dopamine D3 receptor-preferring, D3/D2 dopamine receptor antagonist–partial agonist antipsychotic candidate: in vitro and neurochemical profile. J Pharmacol Exp Ther. 2010; 333: 328–340.

  • 14

    Morphy R, Rankovic Z. Designed multiple ligands. An emerging drug discovery paradigm. J Med Chem. 2005; 48: 6523–6543.

  • 15

    Bolognesi ML, Banzi R, Bartolini M, et al. Novel class of quinone-bearing polyamines as multi-target-directed ligands to combat Alzheimer’s disease. J Med Chem. 2007; 50: 4882–4897.

  • 16

    Proschak E, Stark H, Merk D. Polypharmacology by design: a medicinal chemist’s perspective on multitargeting compounds. J Med Chem. 2019; 62: 420–444.

  • 17

    Meunier B. Hybrid molecules with a dual mode of action: dream or reality? Acc Chem Res. 2008; 41: 69–77.

  • 18

    Peters JU. Polypharmacology – foe or friend? J Med Chem. 2013; 56: 8955–8971.

  • 19

    Kerru N, Singh P, Koorbanally N, et al. Recent advances (2015–2016) in anticancer hybrids. Eur J Med Chem. 2017; 142: 179–212.

  • 20

    León R, Garcia AG, Marco-Contelles J. Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimer’s disease. Med Res Rev. 2013; 33: 139–189.

  • 21

    Raghavendra NM, Pingili D, Kadasi S, et al. Dual or multi-targeting inhibitors: the next generation anticancer agents. Eur J Med Chem. 2018; 143: 1277–1300.

  • 22

    Saenz-Méndez P, Eriksson LA. Exploring polypharmacology in drug design. Methods Mol Biol. 2018; 1824: 229–243.

  • 23

    Mei Y, Yang B. Rational application of drug promiscuity in medicinal chemistry. Future Med Chem. 2018; 10: 1835–1851.

  • 24

    Simoni E, Daniele S, Bottegoni G, et al. Combining galantamine and memantine in multitargeted, new chemical entities potentially useful in Alzheimer’s disease. J Med Chem. 2012; 55: 9708−9721.

  • 25

    Hilt S, Tang T, Walton JH, et al. Metal-free method for producing MRI contrast at amyloid-beta. J Alzheimers Dis. 2017; 55: 1667–1681.

  • 26

    Mátyus P, Varró A, Papp Gy, et al. Antiarrhythmic agents: current status and perspectives. Med Res Rev. 1997; 17: 427–451.

  • 27

    Baczkó I, El-Reyani NE, Farkas A, et al. Antiarrhythmic and electrophysiological effects of GYKI-16638, a novel N-(phenoxyalkyl)-N-phenylalkylamine, in rabbits. Eur J Pharmacol. 2000; 404: 181–190.

  • 28

    Opincariu M, Varró A, Iost N, et al. The cellular electrophysiologic effect of a new amiodarone like antiarrhythmic drug GYKI 16638 in undiseased human ventricular muscle: comparison with sotalol and mexiletine. Curr Med Chem. 2002; 9: 41–46.

  • 29

    Mátyus P. Cardiovascular system research at the Institute of Drug Research. [Kardiovaszkuláris hatóanyagok kutatása a Gyógyszerkutató Intézetben.] Acta Pharm Hung. 2001; 71: 67–72. [Hungarian]

  • 30

    Mátyus P, Chai CL. Metabolism-activated multitargeting (MAMUT): an innovative multitargeting approach to drug design and development. Chem Med Chem. 2016; 11: 1197–1198.

  • 31

    Bar-Am O, Weinreb O, Amit T, et al. The neuroprotective mechanism of 1-(R)-aminoindan, the major metabolite of the anti-parkinsonian drug rasagiline. J Neurochem. 2010; 112: 1131–1137.

  • 32

    Mátyus P, Magyar K, Pihlavisto M, et al. WO/2010/029379 – Compounds for inhibiting semicarbazide-sensitive amine oxidase (SSAO)/vascular adhesion protein-1 (VAP-1) and uses thereof for treatment and prevention of diseases. 2010; PCT international application: WO/2010/029379.

  • 33

    Tábi T, Szökő É, Mérey A, et al. Study on SSAO enzyme activity and anti-inflammatory effect of SSAO inhibitors in animal model of inflammation. J Neural Transm. 2013; 120: 963–967.

  • 34

    Helyes Z, Mátyus P, et al. Semicarbazide-sensitive amine-oxidase inhibitors, as analgesics in traumatic neuropathy and neurogenic inflammation. 2014; Hungarian and USA PCT: P1400205.

  • 35

    Horváth Á, Menghis A, Botz B, et al. Analgesic and anti-inflammatory effects of the novel semicarbazide-sensitive amine-oxidase inhibitor SzV-1287 in chronic arthritis models of the mouse. Sci Rep. 2017; 7: 39863.

  • 36

    Payrits M, Sághy É, Mátyus P, et al. A novel 3-(4,5-diphenyl-1,3-oxazol-2-yl)propanal oxime compound is a potent transient receptor potential ankyrin 1 and vanilloid 1 (TRPA1 and V1) receptor antagonist. Neuroscience 2016; 324: 151–162.

  • 37

    Horváth Á, Tékus V, Bencze N, et al. Analgesic effects of the novel semicarbazide-sensitive amine oxidase inhibitor SzV-1287 in mouse pain models with neuropathic mechanisms: involvement of transient receptor potential vanilloid 1 and ankyrin 1 receptors. Pharmacol Res. 2018; 131: 231–243.

  • 38

    Csermely P, Ágoston V, Pongor S. The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol Sci. 2005; 26: 178–182.

  • 39

    Moya-García A, Adeyelu T, Kruger FA, et al. Structural and functional view of polypharmacology. Sci Rep. 2017; 7: 10102.

  • 40

    Talevi, A. Multiple-target pharmacology: possibilities and limitations of the “skeleton key approach” from a medicinal chemist perspective. Front Pharmacol. 2015; 6: 205.

  • 41

    Helmlinger G, Sokolov V, Peskov K. Quantitative systems pharmacology: an exemplar model-building workflow with applications in cardiovascular, metabolic, and oncology drug development. CPT Pharmacometrics Syst Pharmacol. 2019; 8: 380–395.

  • 42

    van Hasselt JG, van der Graaf PH. Towards integrative systems pharmacology models in oncology drug development. Drug Discov Today Technol. 2015; 15: 1–8.

  • 43

    Geerts H, Roberts P, Spiros A, et al. Assessing the synergy between cholinomimetics and memantine as augmentation therapy in cognitive impairment in schizophrenia. A virtual human patient trial using quantitative systems pharmacology. Front Pharmacol. 2015; 6: 198.

  • 44

    Thiel C, Smit I, Baier V, et al. Using quantitative systems pharmacology to evaluate the drug efficacy of COX-2 and 5-LOX inhibitors in therapeutic situations. NPJ Syst Biol Appl. 2018; 4: 28.

  • 45

    Chai CL, Mátyus P. One size does not fit all: challenging some dogmas and taboos in drug discovery. Future Med Chem. 2016; 8: 29–38.

  • 46

    Rastelli G, Pinzi L. Computational polypharmacology comes of age. Front Pharmacol. 2015; 6: 157.

  • 47

    Sellwood MA, Ahmed M, Segler MH, et al. Artificial intelligence in drug discovery. Future Med Chem. 2018; 10: 2025–2028.

  • 48

    Vamathevan J, Clark D, Czodrowsky P, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019; 18: 463–477.

  • 49

    Pritchard KA Jr, Martin DP, Naylor S. Systems pharmacology: when multi-targeting is advantageous. Drug Discov World 2018/19 Winter issue. Available from: https://www.ddw-online.com/therapeutics/p322783-systems-pharmacology:-when-multi-targeting-is-advantageous.html [accessed: December 14, 2019].

  • 50

    Lim H, He D, Qiu Y, et al. Rational discovery of dual-indication multi-target PDE/kinase inhibitor for precision anti-cancer therapy using structural systems pharmacology. PLOS Comput Biol. 2019; 15: e1006619.

  • 51

    van Hasselt JG, Iyengar R. Systems pharmacology: defining the interactions of drug combinations. Annu Rev Pharmacol Toxicol. 2019; 59: 21–40.

  • 52

    Cheng F. In silico oncology drug repositioning and polypharmacology. Methods Mol Biol. 2019; 1878: 243–261.

  • 53

    Khalid Z, Sezerman OU. Computational drug repurposing to predict approved and novel drug–disease association. J Mol Graph Model. 2018; 85: 91–96.

  • Impact Factor (2018): 0.564
  • Medicine (miscellaneous) SJR Quartile Score (2018): Q3
  • Scimago Journal Rank (2018): 0.193
  • SJR Hirsch-Index (2018): 18

Language: Hungarian

Founded in 1857
Publication: Weekly, one volume of 52 issues annually

Senior editors

Editor(s)-in-Chief: Papp Zoltán

Read the professional career of Papp Zoltán HERE.

 

Editorial Board

Click for the Editorial Board

Akadémiai Kiadó
Address: Prielle Kornélia u. 21-35. H-1117 Budapest, Hungary
Phone: (+36 1) 464 8235 ---- Fax: (+36 1) 464 8221
Email: orvosihetilap@akkrt.hu

The author instructions are available in PDF.
Instructions for Authors in Hungarian HERE.

Mendeley citation style is available HERE.

 

MANUSCRIPT SUBMISSION