View More View Less
  • 1 Magyar Tudományos Akadémia, Budapest
  • 2 Óbudai Egyetem, Budapest
  • 3 Budapesti Corvinus Egyetem, Budapest
  • 4 Semmelweis Egyetem, Budapest, Nagyvárad tér 4., 1089
  • 5 Magyar Tudományos Akadémia, Budapest
Open access

Absztrakt:

A COVID–19-járvány mindenkit, szakembert és laikust egyaránt váratlanul érintett, jóllehet egy világméretű pandémia lehetőségét egyrészről az epidemiológusok, infektológusok, másrészről szociológusok, kommunikációs, sőt társadalmi szokásokkal foglalkozó viselkedéstudományi szakemberek elméletben már régóta elképzelhetőnek tartották. Mégis, szembesülve a „real-time” történésekkel, a napi fertőzöttségi és mortalitási statisztikákkal, szinte mindenki tudatlannak, illetve zavaróan tapasztalatlannak érzi magát. A jelen összefoglalás tudományos evidenciákról kíván áttekintést nyújtani. A 2020. március végén összeállított, korántsem teljességre törekedő anyag természetesen nem kevés olyan elemet tartalmaz, amely pár hét múlva meghaladott lesz. A szerzők remélik, hogy egy legközelebbi publikációban mindannyian sokkal jobb és reménytelibb kilátásokról tudósíthatunk. Orv Hetil. 2020; 161(17): 644–651.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Recommendations of the Hungarian Medical Association for disruption of the coronavirus pandemic. [A Magyar Orvosi Kamara elnökségének javaslata a koronavírus okozta járvány megfékezésére – 2020. 03. 15.] MOK, Budapest. Available from: https://mok.hu/koronavirus/velemenyek/a-magyar-orvosi-kamara-elnoksegenek-javaslata-a-koronavirus-okozta-jarvany-megfekezesere--20200315 [accessed: 31 March 2020]. [Hungarian]

  • 2

    Takács M. Clinical and epidemiological virology. [Klinikai és járványügyi virológia.] Vox Medica Kiadói Kft., Budapest, 2010. [Hungarian]

  • 3

    Weiss SR. Forty years with coronaviruses. J Exp Med. 2020; 217(5). .

    • Crossref
    • Export Citation
  • 4

    The University of Manchester. BMH student handbooks. MSc clinical immunology handbook. Available from: handbooks.bmh.manchester.ac.uk/2018-19/sms/pg/msc-clinical-immunology/ [accessed: 31 March 2020].

  • 5

    Miller A, Reandelar MJ, Fasciglione K, et al. Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: an epidemiological study. 2020 March 24. . [accessed: 31 March 2020]

    • Crossref
    • Export Citation
  • 6

    Roper RL, Rehm KE. SARS vaccines: where are we? Expert Rev Vaccines 2009; 87: 887–898.

  • 7

    Chen WH, Chag SM, Poongavanam MV, et al. Optimization of the production process and characterization of the yeast-expressed SARS-CoV recombinant receptor-binding domain [RBD219-N1], a SARS vaccine candidate. J Pharm Sci. 2017; 106: 1961–1970.

  • 8

    Dedigo ML, Pewe L, Alvarez E, et al. Pathogenicity of severe acute respiratory coronavirus deletion mutants in hACE-2 transgenic mice. Virology 2008; 376: 379–389.

  • 9

    BioSpace. Codagenix and Serum Institute of India initiate co-development of a scalable, live-attenuated vaccine against the 2019 novel coronavirus, COVID-19. 2020 Feb 13. Available from: https://www.biospace.com/article/releases/codagenix-and-serum-institute-of-india-initiate-co-development-of-a-scalable-live-attenuated-vaccine-against-the-2019-novel-coronavirus-covid-19 [accessed: 31 March 2020].

  • 10

    Tsunetsugu-Yokota Y. Large-scale preparation of UV-inactivated SARS coronavirus virions for vaccine antigen – and other coronaviruses. Methods Mol Biol. 2008; 454: 119–126.

  • 11

    Zakhartchouk AN, Liu Q, Petric M, et al. Augmentation of immune responses to SARS coronavirus by a combination of DNA and whole killed virus vaccines. Vaccine 2005; 23: 4385–4391.

  • 12

    See RH, Zakhartehouk AN, Martin Petric M, et al. Comparative evaluation of two severe acute respiratory syndrome (SARS) vaccine candidates in mice challenged with SARS coronavirus. J Gen Virology 2006; 87: 641–650.

  • 13

    Ahmed FS, Quadeer AA, McKay MR. Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses 2020; 12: E254.

  • 14

    Wang Z, Yuan Z, Matsumoto M, et al. Immune responses with DNA vaccines encoded different gene fragments of severe acute respiratory syndrome coronavirus in BALB/c mice. Biochem Biophys Res Commun. 2005; 327: 130–135.

  • 15

    Coalition for Epidemic Preparedness Innovations. CEPI’s response to COVID-19. CEPI, Oslo. Available from: https://cepi.net/covid-19 [accessed: 31 March 2020].

  • 16

    Saif LJ. Animal coronavirus vaccines: lessons for SARS. Develop Biol. 2004; 119: 129–140.

  • 17

    Weiss SR, Richard C, Scott FW. Antibody-mediated enhancement of disease in feline infectious peritonitis: comparisons with dengue hemorrhagic fever. Comp Immunol Microbiol Infect Dis. 1981; 4: 175–189.

  • 18

    Bolles M, Deming D, Long K, et al. A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. J Virol. 2011; 85: 12201–12215.

  • 19

    World Health Organization. DRAFT landscape of COVID-19 candidate vaccines – 20 March 2020. WHO, Geneva. Available from: https://www.who.int/blueprint/priority-diseases/key-action/novel-coronavirus-landscape-ncov.pdf [accessed: 31 March 2020].

  • 20

    World Health Organization. WHO Director-General’s opening remarks at the media briefing on COVID-19. 27 March 2020. WHO, Geneva. Available from: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---27-march-2020 [accessed: 31 March 2020].

  • 21

    World Health Organization. Use of laboratory methods for SARS diagnosis. WHO, Geneva. Available from: https://www.who.int/csr/sars/labmethods/en/ [accessed: 31 March 2020].

  • 22

    European Commission. A new control material developed by JRC scientists to help prevent coronavirus test failures. EC, Brussels. Available from: https://ec.europa.eu/jrc/en/news/new-control-material-developed-jrc-scientists-help-prevent-coronavirus-test-failures [accessed: 31 March 2020].

  • 23

    National Institutes of Health, U. S. National Library of Medicine, Bethesda, MD. Available from: https://clinicaltrials.gov [accessed: 31 March 2020].

  • 24

    Silverman E. Under intense criticism, Gilead forsakes monopoly status for its experimental Covid-19 drug. Available from: https://www.statnews.com/pharmalot/2020/03/25/gilead-covid19-coronavirus-orphan-drug/ [accessed: 31 March 2020].

  • 25

    Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrobial Agents 2020 Mar 17. . [Epub ahead of print]

    • Crossref
    • Export Citation
  • 26

    Molina JM, Delaugerre C, Goff JL, et al. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med Mal Infect. 2020 Mar 30. Doi: https://doi.org/10.1016/j.medmal.2020.03.006. [Epub ahead of print]

  • 27

    Casadevall A, Pirofski L. The convalescent sera option for containing COVID-19. J Clin Invest. 2020; 130: 1545–1548.

  • 28

    U. S. Food and Drug Administration. Investigational COVID- 19 Convalescent Plasma – Emergency INDs. FDA, White Oak, MD. Available from: https://www.fda.gov/vaccines-blood-biologics/investigational-new-drug-ind-or-device-exemption-ide-process-cber/investigational-covid-19-convalescent-plasma-emergency-inds [accessed: 31 March 2020].

  • 29

    Research consortium has been established for collection of human plasma. [Magyar tudományos konzorcium alakult a vérplazma gyűjtésére.] Available from: https://index.hu/techtud/2020/03/30/emmi_kasler_operativ_torzs_tudomanyos_konzorcium/ [accessed: 31 March 2020]. [Hungarian]

  • 30

    Shen C, Wang Z, Zhao F, et al. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA 2020 Mar 27. Doi:10.1001/jama.2020.4783. [Epub ahead of print]

  • 31

    Gordon DE, JangGE, Bouhaddou M, et al. A SARS-CoV-2-human protein-protein interaction map reveals drug targets and potential drug-repurposing. bioRxiv preprint 2020. Doi: https://doi.289org/10.1101/2020.03.22.002386.

 

The author instructions are available in PDF.
Instructions for Authors in Hungarian HERE.

 

Mendeley citation style is available HERE.
  • Impact Factor (2019): 0.497
  • Scimago Journal Rank (2018): 0.176
  • SJR Hirsch-Index (2018): 20
  • SJR Quartile Score (2018): Q3 Medicine (miscellaneous)
  • Impact Factor (2018): 0.564
  • Scimago Journal Rank (2018): 0.193
  • SJR Hirsch-Index (2018): 18
  • SJR Quartile Score (2018): Q3 Medicine (miscellaneous)

Language: Hungarian

Founded in 1857
Publication: Weekly, one volume of 52 issues annually

Senior editors

Editor(s)-in-Chief: Papp Zoltán

Read the professional career of Papp Zoltán HERE.

 

Editorial Board

Click for the Editorial Board

Akadémiai Kiadó
Address: Prielle Kornélia u. 21-35. H-1117 Budapest, Hungary
Phone: (+36 1) 464 8235 ---- Fax: (+36 1) 464 8221
Email: orvosihetilap@akkrt.hu