2019 decemberében egy új típusú pneumoniajárvány kitöréséről számoltak be a kínai Wuhan városából, melynek kórokozója egy új koronavírus volt. A kezdetben állatról emberre terjedő betegség később emberről emberre is terjedt, világjárványt okozva. A vírus okozta betegség (COVID–19) a tünetmentestől az enyhe tünetekkel járón keresztül a súlyos, légzési elégtelenséggel, intenzív osztályos ellátást igénylő spektrumon keresztül változatos formában megjelenhet. Ez utóbbi betegcsoport ellátása jelentős terhet ró az egészségügyre. Ezen összefoglaló célja az intenzív ellátást és légzéstámogatást/gépi lélegeztetést igénylő betegek ellátásának gyakorlati aspektusait hivatott bemutatni. Orv Hetil. 2020; 161(17): 678–684.
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497–506.
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective study. Lancet 2020; 395: 1054–1062.
World Health Organization. Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected: interim guidance, 13 March 2020. WHO, Geneva. Available from: https://apps.who.int/iris/handle/10665/331446.
Alhazzani W, Møller MH, Arabi YM, et al. Surviving sepsis campaign: guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Intensive Care Med. 2020 Mar 28. . [Epub ahead of print]
Rhodes A, Evans LE, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017; 43: 304–377.
Weiss SL, Peters MJ, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Pediatr Crit Care Med. 2020; 21: e52–e106.
Cai J, Xu J, Lin D, et al. A case series of children with 2019 novel coronavirus infection: Clinical and epidemiological features. Clin Infect Dis. 2020 Feb 28. . [Epub ahead of print]
Xia W, Shao J, Guo Y, et al. Clinical and CT features in pediatric patients with COVID-19 infection: different points from adults. Pediatr Pulmonol. 2020 Mar 5. . [Epub ahead of print]
Wei M, Yuan J, Liu Y, et al. Novel coronavirus infection in hospitalized infants under 1 year of age in China. JAMA 2020 Feb 14. . [Epub ahead of print]
Amato MB, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015; 372: 747–755.
Briel M, Meade M, Mercat A, et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA 2010; 303: 865–873.
Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART) Investigators; Cavalcanti AB, Suzumura EA, Laranjeira LN, et al. Effect of lung recruitment and titrated positive endexpiratory pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA 2017; 318: 1335–1345.
Goligher EC, Kavanagh BP, Rubenfeld GD, et al. Oxygenation response to positive endexpiratory pressure predicts mortality in acute respiratory distress syndrome. A secondary analysis of the LOVS and ExPress trials. Am J Respir Crit Care Med. 2014; 190: 70–76.
Gattinoni L, Collino F, Maiolo G, et al. Positive end-expiratory pressure: how to set it at the individual level. Ann Transl Med. 2017; 5(14): 288.
Papazian L, Forel JM, Gacouin A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010; 363: 1107–1116.
National Heart, Lung, and Blood Institute, PETAL Clinical Trials Network; Moss M, Huang DT, Brower RG, et al. Early neuromuscular blockade in the acute respiratory distress syndrome. N Engl J Med. 2019; 380: 1997–2008.
Rochwerg B, Brochard L, Elliott MW, et al. Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur Respir J. 2017; 50(2): 1602426.
Lansbury L, Rodrigo C, Leonardi-Bee J, et al. Corticosteroids as adjunctive therapy in the treatment of influenza. Cochrane Database Syst Rev. 2016; 2: CD010406.
Delaney JW, Pinto R, Long J, et al. The influence of corticosteroid treatment on the outcome of influenza A(H1N1pdm09)-related critical illness. Crit Care 2016; 20: 75.
Jain RK, Swaminathan S. Anaesthesia ventilators. Indian J Anaesth. 2013; 57: 525–532.
Jaber S, Langlais N, Fumagalli B, et al. Performance studies of 6 new anesthesia ventilators: bench tests. [Etude des performances de six nouveaux ventilateurs d’anesthésie: banc d’essai.] Ann Fr Anesth Reanim. 2000; 19: 16–22. [French]
Jaber S, Tassaux D, Sebbane M, et al. Performance characteristics of five new anesthesia ventilators and four intensive care ventilators in pressure-support mode: a comparative bench study. Anesthesiology 2006; 105: 944–952.
Sen AC, Kavya KR, Meghna P, et al. Anesthesia workstation versus intensive care ventilator in pediatric cardiac surgery, is there a difference? EC Pulmonol Respir Med. 2019; 86: 522–528.
Bristle T, Collins SB, Hewer I, et al. Anesthesia and critical care ventilator modes: past, present, and future. AANA J. 2014; 82: 387–400.
Dräger. The anesthesia ventilator. Lübeck, 2010. Available from: https://www.draeger.com/Library/Content/9049447_the_anesthesia_ventilator_8seitig_en_101209_fin.pdf.