View More View Less
  • 1 Semmelweis Egyetem, Budapest, Tűzoltó u. 58., 1094
Open access

Absztrakt:

Az emésztőrendszer megfelelő működése nélkülözhetetlen a tápanyagtranszporthoz, a felszívódáshoz, az emésztéshez és a salakanyagok kiürítéséhez, de ezenfelül fontos feladata van a patogénekkel, allergénekkel és toxinokkal szembeni védelemben és a bélrendszer homeosztázisának fenntartásában. Ezeknek a feladatoknak a koordinációját a bél ideg- és immunrendszere szoros együttműködésben végzi a belső és külső környezethez való folyamatos alkalmazkodás révén. A bél élőhelyet és tápanyagokat szolgáltat a benne élő mikroorganizmusok számára, amelyek jelentős hatással vannak a tápcsatorna fejlődésére és annak funkcionális működésére. A bélcsatorna és a benne élő mikroorganizmusok közösen végzik el az emésztést, s látják el az immun-, neuroendokrin és ingerületátviteli funkciókat. Ezt az egymással morfofunkcionálisan együttműködő struktúrát hívjuk mikrobiom–bél–agy-tengelynek, melynek kiindulópontját az enteralis idegrendszer és a bél mononukleáris sejtjei között fennálló neuroimmunológiai interakciók szolgáltatják. Összefoglaló közleményünkben ennek a fellendülő tudományterületnek a legfontosabb és legfrissebb eredményeiről, aktuális kutatási témáiról számolunk be, kiegészítve azzal, hogy milyen klinikai vonatkozásai lehetnek a jövő orvoslásában a bél–agy-tengely patológiás működésének és a bélflóra megváltozásának. Orv Hetil. 2020; 161(19): 771–779.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    del Rio-Hortega P. El tercer elemento de los centros nerviosos. I. La microglia en estado normal. II. Intervencio de la microglia en los processos patologicos. III. Naturaleza probable de la microglia. Bol Soc Esp Biol. 1919; 9: 69–120.

  • 2

    Nagy N, Goldstein AM. Enteric nervous system development: A crest cell’s journey from neural tube to colon. Semin Cell Dev Biol. 2017; 66: 94–106.

  • 3

    Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice: I. Morphology, quantitation, tissue distribution. J Exp Med. 1973; 137: 1142–1162.

  • 4

    Dóra D, Fejszák N, Goldstein AM, et al. Ontogeny of ramified CD45 cells in chicken embryo and their contribution to bursal secretory dendritic cells. Cell Tissue Res. 2017; 368: 353–370.

  • 5

    Muller PA, Koscsó B, Rajani GM, et al. Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell 2014; 158: 300–313. [Correction: Cell 2014; 158: 1210.]

  • 6

    Gabanyi I, Muller PA, Feighery L, et al. Neuro-immune interactions drive tissue programming in intestinal macrophages. Cell 2016; 164: 378–391.

  • 7

    Dora D, Arciero E, Hotta R, et al. Intraganglionic macrophages: a new population of cells in the enteric ganglia. J Anat. 2018; 233: 401–410.

  • 8

    Nagy N, Barad C, Hotta R, et al. Collagen 18 and agrin are secreted by neural crest cells to remodel their microenvironment and regulate their migration during enteric nervous system development. Development 2018; 145: dev160317.

  • 9

    De Schepper S, Verheijden S, Aguilera-Lizarraga J, et al. Self-maintaining gut macrophages are essential for intestinal homeostasis. Cell 2018; 175: 400–415.e13. [Correction: Cell 2019; 176: 676.]

  • 10

    Bogunovic M, Ginhoux F, Helft J, et al. Origin of the lamina propria dendritic cell network. Immunity 2009; 31: 513–525.

  • 11

    Lemos MP, Fan L, Lo D, et al. CD8α+ and CD11b+ dendritic cell-restricted MHC class II controls Th1 CD4+ T cell immunity. J Immunol. 2003; 171: 5077–5084. [Correction: J Immunol. 2004; 172: 717.]

  • 12

    Helft J, Ginhoux F, Bogunovic M, et al. Origin and functional heterogeneity of non-lymphoid tissue dendritic cells in mice. Immunol Rev. 2010; 234: 55–75.

  • 13

    Iwasaki A. Mucosal dendritic cells. Annu Rev Immunol. 2007; 25: 381–418.

  • 14

    Jaensson E, Uronen-Hansson H, Pabst O, et al. Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans. J Exp Med. 2008; 205: 2139–2149.

  • 15

    Denning TL, Norris BA, Medina-Contreras O, et al. Functional specializations of intestinal dendritic cell and macrophage subsets that control Th17 and regulatory T cell responses are dependent on the T cell/APC ratio, source of mouse strain, and regional localization. J Immunol. 2011; 187: 733–747.

  • 16

    Rivollier A, He J, Kole A, et al. Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. J Exp Med. 2012; 209: 139–155.

  • 17

    Schridde A, Bain CC, Mayer JU, et al. Tissue-specific differentiation of colonic macrophages requires TGFβ receptor-mediated signaling. Mucosal Immunol. 2017; 10: 1387–1399.

  • 18

    Niess JH, Brand S, Gu X, et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 2005; 307: 254–258.

  • 19

    Mazzini E, Massimiliano L, Penna G, et al. Oral tolerance can be established via gap junction transfer of fed antigens from CX3CR1(+) macrophages to CD103(+) dendritic cells. Immunity 2014; 40: 248–261.

  • 20

    Mikkelsen HB. Interstitial cells of Cajal, macrophages and mast cells in the gut musculature: morphology, distribution, spatial and possible functional interactions. J Cell Mol Med. 2010; 14: 818–832.

  • 21

    Phillips RJ, Powley TL. Macrophages associated with the intrinsic and extrinsic autonomic innervation of the rat gastrointestinal tract. Auton Neurosci. 2012; 169: 12–27.

  • 22

    Flores-Langarica A, Meza-Perez S, Calderon-Amador J, et al. Network of dendritic cells within the muscular layer of the mouse intestine. Proc Natl Acad Sci USA 2005; 102: 19039–19044.

  • 23

    Bain CC, Scott CL, Uronen-Hansson H, et al. Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol. 2013; 6: 498–510.

  • 24

    Gautier EL, Shay T, Miller J, et al.; Immunological Genome Consortium. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol. 2013; 13: 1118–1128.

  • 25

    Zigmond E, Bernshtein B, Friedlander G, et al. Macrophage-restricted interleukin-10 receptor deficiency, but not IL-10 deficiency, causes severe spontaneous colitis. Immunity 2014; 40: 720–733.

  • 26

    Shaw TN, Houston SA, Wemyss K, et al. Tissue-resident macrophages in the intestine are long lived and defined by Tim-4 and CD4 expression. J Exp Med. 2018; 215: 1507–1518.

  • 27

    Yang B, Li LJ, Xu LZ, et al. Histone acetyltransferease p300 modulates TIM4 expression in dendritic cells. Sci Rep. 2016; 6: 21336.

  • 28

    Butovsky O, Jedrychowski MP, Moore CS, et al. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat Neurosci. 2014; 17: 131–143. [Correction: Nat Neurosci. 2014; 17: 1286.]

  • 29

    Avetisyan M, Rood JE, Huerta Lopez S, et al. Muscularis macrophage development in the absence of an enteric nervous system. Proc Natl Acad Sci USA 2018; 115: 4696–4701.

  • 30

    Goldstein AM, Brewer KC, Doyle AM, et al. BMP signaling is necessary for neural crest cell migration and ganglion formation in the enteric nervous system. Mech Dev. 2005; 122: 821–833.

  • 31

    Fu M, Vohra BP, Wind D, et al. BMP signaling regulates murine enteric nervous system precursor migration, neurite fasciculation, and patterning via altered Ncam1 polysialic acid addition. Dev Biol. 2006; 299: 137–150.

  • 32

    Abrams GD, Bishop JE. Effect of the normal microbial flora on gastrointestinal motility. Proc Soc Exp Biol Med. 1967; 126: 301–304.

  • 33

    Anitha M, Vijay-Kumar M, Sitaraman SV, et al. Gut microbial products regulate murine gastrointestinal motility via Toll-like receptor 4 signaling. Gastroenterology 2012; 143: 1006–1016.e4.

  • 34

    Pullinger GD, van Diemen PM, Carnell SC, et al. 6-Hydroxydopamine-mediated release of norepinephrine increases faecal excretion of Salmonella enterica serovar Typhimurium in pigs. Vet Res. 2010; 41: 68.

  • 35

    Yissachar N, Zhou Y, Ung L, et al. An intestinal organ culture system uncovers a role for the nervous system in microbe-immune crosstalk. Cell 2017; 168: 1135–1148.e12.

  • 36

    Wang Y, Kasper LH. The role of microbiome in central nervous system disorders. Brain Behav Immun. 2014; 38: 1–12.

  • 37

    Wang H, Lee IS, Braun C, et al. Effect of probiotics on central nervous system functions in animals and humans: a systematic review. J Neurogastroenterol Motil. 2016; 22: 589–605.

  • 38

    Johnson KV, Foster KR. Why does the microbiome affect behaviour? Nat Rev Microbiol. 2018; 16: 647–655.

  • 39

    Desbonnet L, Clarke G, Shanahan F, et al. Microbiota is essential for social development in the mouse. Mol Psychiatry 2014; 19: 146–148.

  • 40

    Heijtz RD, Wang S, Anuar F, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA 2011; 108: 3047–3052.

  • 41

    Thion MS, Low D, Silvin A, et al. Microbiome influences prenatal and adult microglia in a sex-specific manner. Cell 2018; 172: 500–516.e16.

  • 42

    Slykerman RF, Thompson J, Waldie KE, et al. Antibiotics in the first year of life and subsequent neurocognitive outcomes. Acta Paediatr. 2017; 106: 87–94.

  • 43

    Luczynski P, Tramullas M, Viola M, et al. Microbiota regulates visceral pain in the mouse. eLife 2017; 6: e25887.

  • 44

    Fröhlich EE, Farzi A, Mayerhofer R, et al. Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota–brain communication. Brain Behav Immun. 2016; 56: 140–155.

  • 45

    Dickerson F, Severance E, Yolken R. The microbiome, immunity, and schizophrenia and bipolar disorder. Brain Behav Immun. 2017; 62: 46–52.

  • 46

    Rook GA. Regulation of the immune system by biodiversity from the natural environment: an ecosystem service essential to health. Proc Natl Acad Sci USA 2013; 110: 18360–18367.

  • 47

    Kramer A, Bekeschus S, Bröker BM, et al. Maintaining health by balancing microbial exposure and prevention of infection: the hygiene hypothesis versus the hypothesis of early immune challenge. J Hosp Infect. 2013; 83(Suppl 1): S29–S34.

  • 48

    Slyepchenko A, Maes M, Jacka FN, et al. Gut microbiota, bacterial translocation, and interactions with diet: pathophysiological links between major depressive disorder and non-communicable medical comorbidities. Psychother Psychosom. 2017; 86: 31–46.

  • 49

    Bird JE, Daudet N, Warchol ME, et al. Supporting cells eliminate dying sensory hair cells to maintain epithelial integrity in the avian inner ear. J Neurosci. 2010; 30: 12545–12556.

  • 50

    Kulkarni S, Micci MA, Leser J, et al. Adult enteric nervous system in health is maintained by a dynamic balance between neuronal apoptosis and neurogenesis. Proc Natl Acad Sci USA 2017; 114: E3709–E718.

The author instructions are available in PDF.
Instructions for Authors in Hungarian HERE.

Mendeley citation style is available HERE.

 

MANUSCRIPT SUBMISSION

  • Impact Factor (2018): 0.564
  • Medicine (miscellaneous) SJR Quartile Score (2018): Q3
  • Scimago Journal Rank (2018): 0.193
  • SJR Hirsch-Index (2018): 18

Language: Hungarian

Founded in 1857
Publication: Weekly, one volume of 52 issues annually

Senior editors

Editor(s)-in-Chief: Papp Zoltán

Read the professional career of Papp Zoltán HERE.

 

Editorial Board

Click for the Editorial Board

Akadémiai Kiadó
Address: Prielle Kornélia u. 21-35. H-1117 Budapest, Hungary
Phone: (+36 1) 464 8235 ---- Fax: (+36 1) 464 8221
Email: orvosihetilap@akkrt.hu